Research Article
BibTex RIS Cite

Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss

Year 2024, Volume: 14 Issue: 3, 1200 - 1208, 01.09.2024
https://doi.org/10.21597/jist.1456434

Abstract

Sorbus subfusca (ledeb. ex. nordm.) boiss. (Sorbus subfusca) belongs to the Rosacese family. It is commonly referred to as highland rowan. It is an endemic species found only in the eastern Black Sea Region of Turkey and in a few countries on the Asian Continent. Both water (WESS) and ethyl alcohol (EESS) lyophilized forms were used as extracts. Different reducing capacity methods and radical scavenging activity methods were used to study the antioxidant activities of the extracts. Total phenolic compounds were calculated as 43.5 (WESS) and 43.0 (EESS) μg GAE/mg extract. This value is an indication that it can take place in plants with high phenolic content. Peroxidation inhibition percentages of linoleic acid emulsion at 20 μg mL-1 concentration for WESS and EESS; WESS was calculated as 70.93% and EESS as 82.63%. The high antioxidant capacity of Sorbus subfusca, an endemic species, brings up the preference of natural products as antioxidants. It is thought that these studies will draw a new path to the literature, especially alternative medicine and pharmacological studies.

References

  • Akkemik, Ü. (2018). Natural-exotic trees and bushes of Türkiye. General Directorate of Forestry Publications, Ankara, 684.
  • Apak, R., Calokerinos, A., Gorinstein, S., Segundo, M. A., Hibbert, D. B., Gülçin, İ., . . . Çelik, S. E. (2022). Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 94(1), 87-144.
  • Ekin, H. N., Gokbulut, A., Aydin, Z. U., Donmez, A. A., & Orhan, I. E. (2016). Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industrial Crops and Products, 91, 104-113.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine‐related compounds. Archiv der Pharmazie, 346(11), 783-792.
  • Gökşin, A. (1982). Research on the Distribution and Some Important Morphological and Anatomical Characteristics of Rowan (Sorbus L.) Taxa Growing Naturally in Türkiye. Forestry Research Institute Publications, Technical Bulletin, 120, 84.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülcin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Gültekin, H., Gülcü, S., Çelik, S., Gürlevik, N., & Öztürk, G. (2007). Katlama Sürelerinin Üvez (Sorbus L.) Tohumlarının Çimlenmesi Üzerine Etkisi. Turkish Journal of Forestry, 8(2), 42-50.
  • Han, H., Yılmaz, H., & Gülçin, I. (2018). Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Records of Natural Products, 12(4), 397-402.
  • Hendek Ertop, M., & Öztürk Sarikaya, S. B. (2017). The Relations Between Hydroxymethylfurfural Content, Antioxidant Activity and Colorimetric Properties of Various Bakery Products. The Journal of Food, 42(6).
  • Kalın, R., Koksal, Z., Kalin, P., Karaman, M., Gulcin, İ., & Ozdemir, H. (2020). In vitro effects of standard antioxidants on lactoperoxidase enzyme-A molecular docking approach. Journal of Biochemical and Molecular Toxicology, 34(1), e22421.
  • Kalkman, C. (2004). Rosaceae Flowering Plants·Dicotyledons (pp. 343-386): Springer.
  • Mutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life, 13(1), 136.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özaslan, M. S., Sağlamtaş, R., Demir, Y., Genç, Y., Saraçoğlu, İ., & Gülçin, İ. (2022). Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity. Chemistry & Biodiversity, 19(8), e202200280.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20(6), e202201250.
  • Sarıkaya, S., & Gülçin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Current Bioactive Compounds, 9(2), 143-152.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gülçin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Öztürk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Topal, M., Öztürk Sarıkaya , S. B., & Topal, F. (2021). COVID 19: The relationship among angiotensin-converting enzyme 2 (ACE 2), renin-angiotensin-aldesterone system (RAS), and chronic diseases. KTO Karatay Üniversitesi Sağlık Bilimleri Dergisi, 2(2), 61-72.
  • Türkan, F., Huyut, Z., Basbugan, Y., & Gülçin, İ. (2020). Influence of some β-lactam drugs on selected antioxidant enzyme and lipid peroxidation levels in different rat tissues. Drug and Chemical Toxicology, 43(1), 27-36.
  • Türkeş, C. (2019). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein and Peptide Letters, 26(6), 392-402.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757-4774.
Year 2024, Volume: 14 Issue: 3, 1200 - 1208, 01.09.2024
https://doi.org/10.21597/jist.1456434

Abstract

References

  • Akkemik, Ü. (2018). Natural-exotic trees and bushes of Türkiye. General Directorate of Forestry Publications, Ankara, 684.
  • Apak, R., Calokerinos, A., Gorinstein, S., Segundo, M. A., Hibbert, D. B., Gülçin, İ., . . . Çelik, S. E. (2022). Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). Pure and Applied Chemistry, 94(1), 87-144.
  • Ekin, H. N., Gokbulut, A., Aydin, Z. U., Donmez, A. A., & Orhan, I. E. (2016). Insight into anticholinesterase and antioxidant potential of thirty-four Rosaceae samples and phenolic characterization of the active extracts by HPLC. Industrial Crops and Products, 91, 104-113.
  • Göçer, H., Akıncıoğlu, A., Öztaşkın, N., Göksu, S., & Gülçin, İ. (2013). Synthesis, Antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine‐related compounds. Archiv der Pharmazie, 346(11), 783-792.
  • Gökşin, A. (1982). Research on the Distribution and Some Important Morphological and Anatomical Characteristics of Rowan (Sorbus L.) Taxa Growing Naturally in Türkiye. Forestry Research Institute Publications, Technical Bulletin, 120, 84.
  • Gulcin, İ. (2020). Antioxidants and antioxidant methods: An updated overview. Archives of Toxicology, 94(3), 651-715.
  • Gülcin, İ. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345-391.
  • Gülçin, İ., Topal, F., Çakmakçı, R., Bilsel, M., Gören, A. C., & Erdogan, U. (2011). Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). Journal of Food Science, 76(4), C585-C593.
  • Gültekin, H., Gülcü, S., Çelik, S., Gürlevik, N., & Öztürk, G. (2007). Katlama Sürelerinin Üvez (Sorbus L.) Tohumlarının Çimlenmesi Üzerine Etkisi. Turkish Journal of Forestry, 8(2), 42-50.
  • Han, H., Yılmaz, H., & Gülçin, I. (2018). Antioxidant activity of flaxseed (Linum usitatissimum L.) shell and analysis of its polyphenol contents by LC-MS/MS. Records of Natural Products, 12(4), 397-402.
  • Hendek Ertop, M., & Öztürk Sarikaya, S. B. (2017). The Relations Between Hydroxymethylfurfural Content, Antioxidant Activity and Colorimetric Properties of Various Bakery Products. The Journal of Food, 42(6).
  • Kalın, R., Koksal, Z., Kalin, P., Karaman, M., Gulcin, İ., & Ozdemir, H. (2020). In vitro effects of standard antioxidants on lactoperoxidase enzyme-A molecular docking approach. Journal of Biochemical and Molecular Toxicology, 34(1), e22421.
  • Kalkman, C. (2004). Rosaceae Flowering Plants·Dicotyledons (pp. 343-386): Springer.
  • Mutlu, M., Bingol, Z., Uc, E. M., Köksal, E., Goren, A. C., Alwasel, S. H., & Gulcin, İ. (2023). Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life, 13(1), 136.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Özaslan, M. S., Sağlamtaş, R., Demir, Y., Genç, Y., Saraçoğlu, İ., & Gülçin, İ. (2022). Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity. Chemistry & Biodiversity, 19(8), e202200280.
  • Özler, E., Topal, F., Topal, M., & Öztürk Sarıkaya, S. B. (2023). LC‐HRMS Profiling and Phenolic Content, Cholinesterase, and Antioxidant Activities of Terminalia citrina. Chemistry & Biodiversity, 20(6), e202201250.
  • Sarıkaya, S., & Gülçin, I. (2013). Radical scavenging and antioxidant capacity of serotonin. Current Bioactive Compounds, 9(2), 143-152.
  • Topal, F. (2019a). Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. International Journal of Food Properties, 22(1), 583-592.
  • Topal, F. (2019b). Inhibition profiles of Voriconazole against acetylcholinesterase, α‐glycosidase, and human carbonic anhydrase I and II isoenzymes. Journal of Biochemical and Molecular Toxicology, 33(10), e22385.
  • Topal, M. (2019). The inhibition profile of sesamol against α-glycosidase and acetylcholinesterase enzymes. International Journal of Food Properties, 22(1), 1527-1535.
  • Topal, M. (2020). Secondary metabolites of ethanol extracts of pinus sylvestris cones from eastern anatolia and their antioxidant, cholinesterase and α-glucosidase activities. Records of Natural Products, 14, 129-138.
  • Topal, M., & Gülçin, İ. (2022). Evaluation of the in vitro antioxidant, antidiabetic and anticholinergic properties of rosmarinic acid from rosemary (Rosmarinus officinalis L.). Biocatalysis and Agricultural Biotechnology, 43, 102417.
  • Topal, M., Öztürk Sarıkaya, S. B., & Topal, F. (2021). Determination of Angelica archangelica’s Antioxidant Capacity and Mineral Content. ChemistrySelect, 6(31), 7976-7980.
  • Topal, M., Öztürk Sarıkaya , S. B., & Topal, F. (2021). COVID 19: The relationship among angiotensin-converting enzyme 2 (ACE 2), renin-angiotensin-aldesterone system (RAS), and chronic diseases. KTO Karatay Üniversitesi Sağlık Bilimleri Dergisi, 2(2), 61-72.
  • Türkan, F., Huyut, Z., Basbugan, Y., & Gülçin, İ. (2020). Influence of some β-lactam drugs on selected antioxidant enzyme and lipid peroxidation levels in different rat tissues. Drug and Chemical Toxicology, 43(1), 27-36.
  • Türkeş, C. (2019). Investigation of potential paraoxonase-I inhibitors by kinetic and molecular docking studies: chemotherapeutic drugs. Protein and Peptide Letters, 26(6), 392-402.
  • Yen, G.-C., & Chen, H.-Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.
  • Zehiroglu, C., & Ozturk Sarikaya, S. B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757-4774.
There are 29 citations in total.

Details

Primary Language English
Subjects Medicinal and Biomolecular Chemistry (Other)
Journal Section Kimya / Chemistry
Authors

Selahattin Kocabaş This is me 0000-0002-0360-4809

Fevzi Topal 0000-0002-2443-2372

Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date March 22, 2024
Acceptance Date May 30, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Kocabaş, S., & Topal, F. (2024). Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Journal of the Institute of Science and Technology, 14(3), 1200-1208. https://doi.org/10.21597/jist.1456434
AMA Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. J. Inst. Sci. and Tech. September 2024;14(3):1200-1208. doi:10.21597/jist.1456434
Chicago Kocabaş, Selahattin, and Fevzi Topal. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 1200-1208. https://doi.org/10.21597/jist.1456434.
EndNote Kocabaş S, Topal F (September 1, 2024) Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. Journal of the Institute of Science and Technology 14 3 1200–1208.
IEEE S. Kocabaş and F. Topal, “Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 1200–1208, 2024, doi: 10.21597/jist.1456434.
ISNAD Kocabaş, Selahattin - Topal, Fevzi. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology 14/3 (September 2024), 1200-1208. https://doi.org/10.21597/jist.1456434.
JAMA Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. J. Inst. Sci. and Tech. 2024;14:1200–1208.
MLA Kocabaş, Selahattin and Fevzi Topal. “Determination of Antioxidant Capacities of Extracts of Sorbus Subfusca (ledeb. Ex. Nordm.) Boiss”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 1200-8, doi:10.21597/jist.1456434.
Vancouver Kocabaş S, Topal F. Determination of Antioxidant Capacities of Extracts of Sorbus subfusca (ledeb. ex. nordm.) boiss. J. Inst. Sci. and Tech. 2024;14(3):1200-8.