Research Article
BibTex RIS Cite

Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization

Year 2024, Volume: 14 Issue: 3, 1209 - 1217, 01.09.2024
https://doi.org/10.21597/jist.1481614

Abstract

In this work, various waste biomasses were subjected to hydrothermal carbonization under mild conditions. The effect of operating temperature, duration time, and biomass-to-water ratio on the chemical and combustion characteristics of the hydrochars were determined. The results were compared to MKP Alpagut lignite to understand the future of hydrochars as an effective and environmentally friendly solid fuel. It was found that the temperature dominantly affects the yield and the chemical characteristics of the hydrochars compared to the duration time and biomass-to-water ratio for real biomasses. Hydrochars obtained from real biomasses showed higher combustion temperatures and slightly higher ignition temperatures. Moreover, the HHV of hydrochar is significantly higher than the MKP lignite and raw biomass. Our results prove that the hydrothermal carbonization process can be assessed as one of the best techniques for the thermochemical conversion of waste biomass into high-value-added valuable solid fuels.

References

  • Assis, E. I. N. C., & Chirwa, E. M. N. (2023). Fuel properties and combustion performance of hydrochars prepared by hydrothermal carbonization of different recycling paper mill wastes. The Canadian Journal of Chemical Engineering, 101(3), 1123–1137. https://doi.org/10.1002/CJCE.24708
  • Brachi, P., Miccio, F., Ruoppolo, G., & Miccio, M. (2017). Pressurized steam torrefaction of biomass: Focus on solid, liquid, and gas phase distributions. Industrial and Engineering Chemistry Research, 56(42), 12163–12173. https://doi.org/10.1021/ACS.IECR.7B02845/ASSET/IMAGES/MEDIUM/IE-2017-02845P_0015.GIF
  • Falco, C., Baccile, N., & Titirici, M. M. (2011). Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 13(11), 3273–3281. https://doi.org/10.1039/C1GC15742F
  • Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160–177. https://doi.org/10.1002/BBB.198
  • González-Arias, J., Sánchez, M. E., Cara-Jiménez, J., Baena-Moreno, F. M., & Zhang, Z. (2022). Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 20(1), 211–221. https://doi.org/10.1007/S10311-021-01311-X/TABLES/2
  • Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 92(6), 1779–1799. https://doi.org/10.1016/J.JOEI.2018.12.003
  • Hoekman, S. K., Broch, A., Robbins, C., Zielinska, B., & Felix, L. (2012). Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conversion and Biorefinery 2012 3:2, 3(2), 113–126. https://doi.org/10.1007/S13399-012-0066-Y
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/J.RSER.2015.01.050
  • Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17(3), 515–521. https://doi.org/10.1016/J.CBPA.2013.05.004
  • Liang, W., Wang, G., Xu, R., Ning, X., Zhang, J., Guo, X., Ye, L., Li, J., Jiang, C., Wang, P., Wang, C. (2022). Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior. Energy, 246, 123343. https://doi.org/10.1016/J.ENERGY.2022.123343
  • Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M.M., Fühner, O.B., Kern, J., Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106. https://doi.org/10.4155/BFS.10.81
  • Lu, J. J., & Chen, W. H. (2015). Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy, 160, 49–57. https://doi.org/10.1016/J.APENERGY.2015.09.026
  • Mahinpey, N., Murugan, P., Mani, T., & Raina, R. (2009). Analysis of Bio-Oil, Biogas, and Biochar from Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor. Energy and Fuels, 23(5), 2736–2742. https://doi.org/10.1021/EF8010959
  • Mazumder, S., Saha, P., McGaughy, K., Saba, A., & Reza, M. T. (2022). Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste. Biomass Conversion and Biorefinery, 12(1), 39–49. https://doi.org/10.1007/S13399-020-00817-8/FIGURES/
  • Nicolae, S. A., Au, H., Modugno, P., Luo, H., Szego, A. E., Qiao, M., Li, L., Yin, W., Heeres, H.J., Berge, N., Titirici, M. M. (2020). Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 22(15), 4747–4800. https://doi.org/10.1039/D0GC00998A
  • Nizamuddin, S., Baloch, H. A., Griffin, G. J., Mubarak, N. M., Bhutto, A. W., Abro, R., Mazari, S.A., Ali, B. S. (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 73, 1289–1299. https://doi.org/10.1016/J.RSER.2016.12.122
  • Pauline, A. L., & Joseph, K. (2020). Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters. Fuel, 279, 118472. https://doi.org/10.1016/J.FUEL.2020.118472
  • Román, S., Nabais, J. M. V., Laginhas, C., Ledesma, B., & González, J. F. (2012). Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Processing Technology, 103, 78–83. https://doi.org/10.1016/J.FUPROC.2011.11.009
  • Saari, J., Sermyagina, E., Kaikko, J., Vakkilainen, E., & Sergeev, V. (2016). Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis. Energy, 113, 574–585. https://doi.org/10.1016/J.ENERGY.2016.06.102
  • Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, 123, 109761. https://doi.org/10.1016/J.RSER.2020.109761
  • Sinag, A., Kruse, A., & Schwarzkopf, V. (2003). Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3. Industrial and Engineering Chemistry Research, 42(15), 3516–3521. https://doi.org/10.1021/IE030079R
  • Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687. https://doi.org/10.1016/J.RSER.2014.07.216
  • Titirici, M. M., & Antonietti, M. (2009). Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 39(1), 103–116. https://doi.org/10.1039/B819318P
  • Titirici, M. M., Antonietti, M., & Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry, 10(11), 1204–1212. https://doi.org/10.1039/B807009A
  • Wang, C., Wang, F., Yang, Q., & Liang, R. (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass and Bioenergy, 33(1), 50–56. https://doi.org/10.1016/J.BIOMBIOE.2008.04.013
  • Wang, L., Chang, Y., & Li, A. (2019). Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renewable and Sustainable Energy Reviews, 108, 423–440. https://doi.org/10.1016/J.RSER.2019.04.011
  • Yumak, T. (2016). Çeşitli Biyokütlelerden Hidrotermal Karbonizasyon Yöntemi ile Biyokömür Eldesi ve Karakterizasyonu (Doktora Tezi). Ankara Üniversitesi, Ankara.
Year 2024, Volume: 14 Issue: 3, 1209 - 1217, 01.09.2024
https://doi.org/10.21597/jist.1481614

Abstract

References

  • Assis, E. I. N. C., & Chirwa, E. M. N. (2023). Fuel properties and combustion performance of hydrochars prepared by hydrothermal carbonization of different recycling paper mill wastes. The Canadian Journal of Chemical Engineering, 101(3), 1123–1137. https://doi.org/10.1002/CJCE.24708
  • Brachi, P., Miccio, F., Ruoppolo, G., & Miccio, M. (2017). Pressurized steam torrefaction of biomass: Focus on solid, liquid, and gas phase distributions. Industrial and Engineering Chemistry Research, 56(42), 12163–12173. https://doi.org/10.1021/ACS.IECR.7B02845/ASSET/IMAGES/MEDIUM/IE-2017-02845P_0015.GIF
  • Falco, C., Baccile, N., & Titirici, M. M. (2011). Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 13(11), 3273–3281. https://doi.org/10.1039/C1GC15742F
  • Funke, A., & Ziegler, F. (2010). Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4(2), 160–177. https://doi.org/10.1002/BBB.198
  • González-Arias, J., Sánchez, M. E., Cara-Jiménez, J., Baena-Moreno, F. M., & Zhang, Z. (2022). Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 20(1), 211–221. https://doi.org/10.1007/S10311-021-01311-X/TABLES/2
  • Heidari, M., Dutta, A., Acharya, B., & Mahmud, S. (2019). A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. Journal of the Energy Institute, 92(6), 1779–1799. https://doi.org/10.1016/J.JOEI.2018.12.003
  • Hoekman, S. K., Broch, A., Robbins, C., Zielinska, B., & Felix, L. (2012). Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Conversion and Biorefinery 2012 3:2, 3(2), 113–126. https://doi.org/10.1007/S13399-012-0066-Y
  • Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359–378. https://doi.org/10.1016/J.RSER.2015.01.050
  • Kruse, A., Funke, A., & Titirici, M. M. (2013). Hydrothermal conversion of biomass to fuels and energetic materials. Current Opinion in Chemical Biology, 17(3), 515–521. https://doi.org/10.1016/J.CBPA.2013.05.004
  • Liang, W., Wang, G., Xu, R., Ning, X., Zhang, J., Guo, X., Ye, L., Li, J., Jiang, C., Wang, P., Wang, C. (2022). Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior. Energy, 246, 123343. https://doi.org/10.1016/J.ENERGY.2022.123343
  • Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M.M., Fühner, O.B., Kern, J., Emmerich, K. H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106. https://doi.org/10.4155/BFS.10.81
  • Lu, J. J., & Chen, W. H. (2015). Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy, 160, 49–57. https://doi.org/10.1016/J.APENERGY.2015.09.026
  • Mahinpey, N., Murugan, P., Mani, T., & Raina, R. (2009). Analysis of Bio-Oil, Biogas, and Biochar from Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor. Energy and Fuels, 23(5), 2736–2742. https://doi.org/10.1021/EF8010959
  • Mazumder, S., Saha, P., McGaughy, K., Saba, A., & Reza, M. T. (2022). Technoeconomic analysis of co-hydrothermal carbonization of coal waste and food waste. Biomass Conversion and Biorefinery, 12(1), 39–49. https://doi.org/10.1007/S13399-020-00817-8/FIGURES/
  • Nicolae, S. A., Au, H., Modugno, P., Luo, H., Szego, A. E., Qiao, M., Li, L., Yin, W., Heeres, H.J., Berge, N., Titirici, M. M. (2020). Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy. Green Chemistry, 22(15), 4747–4800. https://doi.org/10.1039/D0GC00998A
  • Nizamuddin, S., Baloch, H. A., Griffin, G. J., Mubarak, N. M., Bhutto, A. W., Abro, R., Mazari, S.A., Ali, B. S. (2017). An overview of effect of process parameters on hydrothermal carbonization of biomass. Renewable and Sustainable Energy Reviews, 73, 1289–1299. https://doi.org/10.1016/J.RSER.2016.12.122
  • Pauline, A. L., & Joseph, K. (2020). Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters. Fuel, 279, 118472. https://doi.org/10.1016/J.FUEL.2020.118472
  • Román, S., Nabais, J. M. V., Laginhas, C., Ledesma, B., & González, J. F. (2012). Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Processing Technology, 103, 78–83. https://doi.org/10.1016/J.FUPROC.2011.11.009
  • Saari, J., Sermyagina, E., Kaikko, J., Vakkilainen, E., & Sergeev, V. (2016). Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis. Energy, 113, 574–585. https://doi.org/10.1016/J.ENERGY.2016.06.102
  • Sharma, H. B., Sarmah, A. K., & Dubey, B. (2020). Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renewable and Sustainable Energy Reviews, 123, 109761. https://doi.org/10.1016/J.RSER.2020.109761
  • Sinag, A., Kruse, A., & Schwarzkopf, V. (2003). Key Compounds of the Hydropyrolysis of Glucose in Supercritical Water in the Presence of K2CO3. Industrial and Engineering Chemistry Research, 42(15), 3516–3521. https://doi.org/10.1021/IE030079R
  • Tekin, K., Karagöz, S., & Bektaş, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 40, 673–687. https://doi.org/10.1016/J.RSER.2014.07.216
  • Titirici, M. M., & Antonietti, M. (2009). Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 39(1), 103–116. https://doi.org/10.1039/B819318P
  • Titirici, M. M., Antonietti, M., & Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chemistry, 10(11), 1204–1212. https://doi.org/10.1039/B807009A
  • Wang, C., Wang, F., Yang, Q., & Liang, R. (2009). Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass and Bioenergy, 33(1), 50–56. https://doi.org/10.1016/J.BIOMBIOE.2008.04.013
  • Wang, L., Chang, Y., & Li, A. (2019). Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renewable and Sustainable Energy Reviews, 108, 423–440. https://doi.org/10.1016/J.RSER.2019.04.011
  • Yumak, T. (2016). Çeşitli Biyokütlelerden Hidrotermal Karbonizasyon Yöntemi ile Biyokömür Eldesi ve Karakterizasyonu (Doktora Tezi). Ankara Üniversitesi, Ankara.
There are 27 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Kimya / Chemistry
Authors

Tuğrul Yumak 0000-0002-3688-3525

Ali Sınağ 0000-0002-1415-8576

Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date May 10, 2024
Acceptance Date May 30, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Yumak, T., & Sınağ, A. (2024). Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization. Journal of the Institute of Science and Technology, 14(3), 1209-1217. https://doi.org/10.21597/jist.1481614
AMA Yumak T, Sınağ A. Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization. J. Inst. Sci. and Tech. September 2024;14(3):1209-1217. doi:10.21597/jist.1481614
Chicago Yumak, Tuğrul, and Ali Sınağ. “Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 1209-17. https://doi.org/10.21597/jist.1481614.
EndNote Yumak T, Sınağ A (September 1, 2024) Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization. Journal of the Institute of Science and Technology 14 3 1209–1217.
IEEE T. Yumak and A. Sınağ, “Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 1209–1217, 2024, doi: 10.21597/jist.1481614.
ISNAD Yumak, Tuğrul - Sınağ, Ali. “Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization”. Journal of the Institute of Science and Technology 14/3 (September 2024), 1209-1217. https://doi.org/10.21597/jist.1481614.
JAMA Yumak T, Sınağ A. Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization. J. Inst. Sci. and Tech. 2024;14:1209–1217.
MLA Yumak, Tuğrul and Ali Sınağ. “Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 1209-17, doi:10.21597/jist.1481614.
Vancouver Yumak T, Sınağ A. Chemical and Combustion Characteristics of Hydrochars Obtained from Various Biomasses by Hydrothermal Carbonization. J. Inst. Sci. and Tech. 2024;14(3):1209-17.