Research Article
BibTex RIS Cite

Recurrent Neural Networks Based Wind Speed Forecasting Models: A Case Study of Yalova

Year 2022, Volume: 5 Issue: 2, 178 - 188, 21.09.2022
https://doi.org/10.38016/jista.1120383

Abstract

Global warming and other adversarial effects caused by fossil fuel sources, renewable energy sources have been attracted more than ever. Especially, parties of Paris Climate Agreement countries pledge to reduce greenhouse gas emissions. Among renewable energy sources, wind energy is one of the significant and eligible source to produce energy sustainably. Wind energy is also one of the most important renewable energy source due to Turkey’s notable wind energy potential. Although wind energy is one of the most important clean energy sources, there are several challenges, such as intermittent and uncertain nature of wind places. Therefore, efficient and reliable energy planning and distribution mostly rely on prediction of wind energy with high accuracy. In this study, we propose four Reccurent Neural Network (RNN) methods to predict short-term wind energy production. We utilize data obtained from a station located in Yalova, Turkey to assess the performance of proposed algorithms. In our analysis, we plan to improve maintenance planning and intervene the sudden breakdowns by predicting 1 hour ahead energy production. First, we analyze the data received from the station, and the data sets were made suitable for the models. The performance results obtained from the models are plausible. Our results indicate that RNN methods can be successfully used to predict wind speed.

References

  • Aasim, S.N. vd., (2019) ‘Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting’, Renewable Energy, 136, pp. 758–768.
  • Aksoy vd., (2013) ‘Rüzgâr gücü üretimi için tahmin ve teklif sistemi tasarımı’, Endüstri Mühendisli Dergisi, 24(3), pp. 4–15.
  • Azad, H. B., Mekhilef, S. and Ganapathy, V. G. (2014) ‘Long-Term Wind Speed Forecasting and General Pattern Recognition Using Neural Networks’, IEEE Transactions on Sustainable Energy, 5(2), pp. 546–553. doi: 10.1109/TSTE.2014.2300150.
  • Barbosa de Alencar, D. et al. (2017) ‘Different Models for Forecasting Wind Power Generation: Case Study’, Energies . doi: 10.3390/en10121976.
  • Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) ‘Time Series Models to Simulate and Forecast Wind Speed and Wind Power’, Journal of Climate and Applied Meteorology. American Meteorological Society, 23(8), pp. 1184–1195. Available at: http://www.jstor.org/stable/26181389.
  • Cadenas, E. et al. (2016) ‘Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model’, Energies . doi: 10.3390/en9020109.
  • Che, Y. et al. (2016) ‘A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan’, Journal of Renewable and Sustainable Energy, 8(1), p. 13302. doi: 10.1063/1.4940208.
  • Demolli, H. et al. (2019) ‘Wind power forecasting based on daily wind speed data using machine learning algorithms’, Energy Conversion and Management, 198, p. 111823. doi: https://doi.org/10.1016/j.enconman.2019.111823.
  • Dokuz, A. S. et al. (2018) ‘Year-ahead wind speed forecasting using a clustering-statistical hybrid method’, in CIEA’2018 International Conference on Innovative Engineering Applications, pp. 971–975.
  • Duan, Jikai vd., (2021) ‘Short-term wind speed forecasting using recurrent neural networks with error correction’, Energy, 217, p. 119397.
  • Dumitru, C.-D. and Gligor, A. (2017) ‘Daily Average Wind Energy Forecasting Using Artificial Neural Networks’, Procedia Engineering, 181, pp. 829–836. doi: https://doi.org/10.1016/j.proeng.2017.02.474.
  • Eldali, F. A. et al. (2016) ‘Employing ARIMA models to improve wind power forecasts: A case study in ERCOT’, in 2016 North American Power Symposium (NAPS), pp. 1–6. doi: 10.1109/NAPS.2016.7747861.
  • Fu, C. et al. (2019) ‘Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine’, Sustainability . doi: 10.3390/su11020512.
  • Higashiyama, K., Fujimoto, Y. and Hayashi, Y. (2017) ‘Feature extraction of numerical weather prediction results toward reliable wind power prediction’, in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6. doi: 10.1109/ISGTEurope.2017.8260216.
  • Hong, T. et al. (2020) ‘Energy Forecasting: A Review and Outlook’, IEEE Open Access Journal of Power and Energy, 7, pp. 376–388. doi: 10.1109/OAJPE.2020.3029979.
  • Kavasseri, R. G. and Seetharaman, K. (2009) ‘Day-ahead wind speed forecasting using f-ARIMA models’, Renewable Energy, 34(5), pp. 1388–1393. doi: https://doi.org/10.1016/j.renene.2008.09.006.
  • Lei, M. et al. (2009) ‘A review on the forecasting of wind speed and generated power’, Renewable and Sustainable Energy Reviews, 13(4), pp. 915–920. doi: https://doi.org/10.1016/j.rser.2008.02.002.
  • Li, C. et al. (2018) ‘Short-term wind power prediction based on data mining technology and improved support vector machine method: A case study in Northwest China’, Journal of Cleaner Production, 205, pp. 909–922. doi: https://doi.org/10.1016/j.jclepro.2018.09.143.
  • Madhiarasan, M. (2021) ‘Long-term wind speed prediction using artificial neural network-based approaches’, AIMS Geosciences. AIMS Press, 7(4), pp. 542–552.
  • Neshat, M. vd., (2021) ‘A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm’, Energy Conversion and Management, 236, p. 114002.
  • Ozkan, M. B. and Karagoz, P. (2015) ‘A Novel Wind Power Forecast Model: Statistical Hybrid Wind Power Forecast Technique (SHWIP)’, IEEE Transactions on Industrial Informatics, 11(2), pp. 375–387. doi: 10.1109/TII.2015.2396011.
  • Rajagopalan, S. and Santoso, S. (2009) ‘Wind power forecasting and error analysis using the autoregressive moving average modeling’, in 2009 IEEE Power & Energy Society General Meeting, pp. 1–6. doi: 10.1109/PES.2009.5276019.
  • Sfetsos, A. (2002) ‘A novel approach for the forecasting of mean hourly wind speed time series’, Renewable Energy, 27(2), pp. 163–174. doi: https://doi.org/10.1016/S0960-1481(01)00193-8.
  • Torres, J. L. et al. (2005) ‘Forecast of hourly average wind speed with ARMA models in Navarre (Spain)’, Solar Energy, 79(1), pp. 65–77. doi: https://doi.org/10.1016/j.solener.2004.09.013.
  • Türkiye Rüzgar Enerjisi İstatistik Raporu (2019). Available at: https://tureb.com.tr//lib/uploads/4e77501b714739a9.pdf.
  • Wang, X., Guo, P. and Huang, X. (2011) ‘A Review of Wind Power Forecasting Models’, Energy Procedia, 12, pp. 770–778. doi: https://doi.org/10.1016/j.egypro.2011.10.103.
  • Yu, C. et al. (2018) ‘A novel framework for wind speed prediction based on recurrent neural networks and support vector machine’, Energy Conversion and Management, 178, pp. 137–145. doi: https://doi.org/10.1016/j.enconman.2018.10.008.
  • Yu, R. et al. (2019) ‘Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space’, Applied Energy, 238, pp. 249–257. doi: https://doi.org/10.1016/j.apenergy.2019.01.010.
  • Zhang, Z. et al. (2019) ‘Long Short-Term Memory Network based on Neighborhood Gates for processing complex causality in wind speed prediction’, Energy Conversion and Management, 192, pp. 37–51. doi: https://doi.org/10.1016/j.enconman.2019.04.006.

Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama

Year 2022, Volume: 5 Issue: 2, 178 - 188, 21.09.2022
https://doi.org/10.38016/jista.1120383

Abstract

Küresel ısınma ve fosil yakıtların çevreye verdiği zararlardan dolayı son yıllarda yenilenebilir enerji kaynakları büyük önem kazanmıştır. Özellikle Paris İklim Anlaşmasıyla ülkeler çevreye zararlı gaz salınımını azaltmak konusunda taahhütlerde bulunmuşlardır. Günümüzde en önemli yenilenebilir enerji kaynaklarından biri de rüzgâr enerjisidir. Türkiye’nin sahip olduğu rüzgâr potansiyeli düşünüldüğünde enerji üretiminde rüzgâr enerjisi daha da önem kazanmaktadır. Rüzgâr enerjisi temiz bir enerji kaynağı olmasına rağmen rüzgârın değişken bir kaynak olması nedeniyle üretilen enerjinin verimli kullanılıp dağıtılabilmesi ve planlama yapılabilmesi sağlıklı rüzgâr enerjisi üretim tahminlerine dayanmaktadır. Bu çalışmada, dört farklı Tekrarlayan Sinir Ağları (TSA) modeli rüzgâr enerjisi üretim tahminlemesi için kullanılmıştır. Çalışmada, Türkiye’nin Yalova ilinde bulunan bir istasyondan elde edilen veriler kullanılarak kısa süreli rüzgâr hızı tahmini yapılmıştır. Analizde bir saat sonrasını tahmin ederek oluşacak ani arıza ve bakım planlamalarına müdahale edilmesi amaçlanmıştır. Öncelikle istasyondan alınan veriler incelenmiş, veri analizleri yapılmış, var olan verilerden yeni veriler üretilmiş ve veri setleri modeller için uygun hale getirilmiştir. Modellerden elde edilen performans sonuçları kabul edilebilir aralıkta olup TSA yöntemlerinin rüzgâr hızı tahmininde başarılı bir şekilde kullanılabileceğini, ve geleneksel zaman serisi yöntemlerine göre daha iyi sonuçlar verdiği sonucuna varılmıştır.

References

  • Aasim, S.N. vd., (2019) ‘Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting’, Renewable Energy, 136, pp. 758–768.
  • Aksoy vd., (2013) ‘Rüzgâr gücü üretimi için tahmin ve teklif sistemi tasarımı’, Endüstri Mühendisli Dergisi, 24(3), pp. 4–15.
  • Azad, H. B., Mekhilef, S. and Ganapathy, V. G. (2014) ‘Long-Term Wind Speed Forecasting and General Pattern Recognition Using Neural Networks’, IEEE Transactions on Sustainable Energy, 5(2), pp. 546–553. doi: 10.1109/TSTE.2014.2300150.
  • Barbosa de Alencar, D. et al. (2017) ‘Different Models for Forecasting Wind Power Generation: Case Study’, Energies . doi: 10.3390/en10121976.
  • Brown, B. G., Katz, R. W. and Murphy, A. H. (1984) ‘Time Series Models to Simulate and Forecast Wind Speed and Wind Power’, Journal of Climate and Applied Meteorology. American Meteorological Society, 23(8), pp. 1184–1195. Available at: http://www.jstor.org/stable/26181389.
  • Cadenas, E. et al. (2016) ‘Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model’, Energies . doi: 10.3390/en9020109.
  • Che, Y. et al. (2016) ‘A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan’, Journal of Renewable and Sustainable Energy, 8(1), p. 13302. doi: 10.1063/1.4940208.
  • Demolli, H. et al. (2019) ‘Wind power forecasting based on daily wind speed data using machine learning algorithms’, Energy Conversion and Management, 198, p. 111823. doi: https://doi.org/10.1016/j.enconman.2019.111823.
  • Dokuz, A. S. et al. (2018) ‘Year-ahead wind speed forecasting using a clustering-statistical hybrid method’, in CIEA’2018 International Conference on Innovative Engineering Applications, pp. 971–975.
  • Duan, Jikai vd., (2021) ‘Short-term wind speed forecasting using recurrent neural networks with error correction’, Energy, 217, p. 119397.
  • Dumitru, C.-D. and Gligor, A. (2017) ‘Daily Average Wind Energy Forecasting Using Artificial Neural Networks’, Procedia Engineering, 181, pp. 829–836. doi: https://doi.org/10.1016/j.proeng.2017.02.474.
  • Eldali, F. A. et al. (2016) ‘Employing ARIMA models to improve wind power forecasts: A case study in ERCOT’, in 2016 North American Power Symposium (NAPS), pp. 1–6. doi: 10.1109/NAPS.2016.7747861.
  • Fu, C. et al. (2019) ‘Short-Term Wind Power Prediction Based on Improved Chicken Algorithm Optimization Support Vector Machine’, Sustainability . doi: 10.3390/su11020512.
  • Higashiyama, K., Fujimoto, Y. and Hayashi, Y. (2017) ‘Feature extraction of numerical weather prediction results toward reliable wind power prediction’, in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6. doi: 10.1109/ISGTEurope.2017.8260216.
  • Hong, T. et al. (2020) ‘Energy Forecasting: A Review and Outlook’, IEEE Open Access Journal of Power and Energy, 7, pp. 376–388. doi: 10.1109/OAJPE.2020.3029979.
  • Kavasseri, R. G. and Seetharaman, K. (2009) ‘Day-ahead wind speed forecasting using f-ARIMA models’, Renewable Energy, 34(5), pp. 1388–1393. doi: https://doi.org/10.1016/j.renene.2008.09.006.
  • Lei, M. et al. (2009) ‘A review on the forecasting of wind speed and generated power’, Renewable and Sustainable Energy Reviews, 13(4), pp. 915–920. doi: https://doi.org/10.1016/j.rser.2008.02.002.
  • Li, C. et al. (2018) ‘Short-term wind power prediction based on data mining technology and improved support vector machine method: A case study in Northwest China’, Journal of Cleaner Production, 205, pp. 909–922. doi: https://doi.org/10.1016/j.jclepro.2018.09.143.
  • Madhiarasan, M. (2021) ‘Long-term wind speed prediction using artificial neural network-based approaches’, AIMS Geosciences. AIMS Press, 7(4), pp. 542–552.
  • Neshat, M. vd., (2021) ‘A deep learning-based evolutionary model for short-term wind speed forecasting: A case study of the Lillgrund offshore wind farm’, Energy Conversion and Management, 236, p. 114002.
  • Ozkan, M. B. and Karagoz, P. (2015) ‘A Novel Wind Power Forecast Model: Statistical Hybrid Wind Power Forecast Technique (SHWIP)’, IEEE Transactions on Industrial Informatics, 11(2), pp. 375–387. doi: 10.1109/TII.2015.2396011.
  • Rajagopalan, S. and Santoso, S. (2009) ‘Wind power forecasting and error analysis using the autoregressive moving average modeling’, in 2009 IEEE Power & Energy Society General Meeting, pp. 1–6. doi: 10.1109/PES.2009.5276019.
  • Sfetsos, A. (2002) ‘A novel approach for the forecasting of mean hourly wind speed time series’, Renewable Energy, 27(2), pp. 163–174. doi: https://doi.org/10.1016/S0960-1481(01)00193-8.
  • Torres, J. L. et al. (2005) ‘Forecast of hourly average wind speed with ARMA models in Navarre (Spain)’, Solar Energy, 79(1), pp. 65–77. doi: https://doi.org/10.1016/j.solener.2004.09.013.
  • Türkiye Rüzgar Enerjisi İstatistik Raporu (2019). Available at: https://tureb.com.tr//lib/uploads/4e77501b714739a9.pdf.
  • Wang, X., Guo, P. and Huang, X. (2011) ‘A Review of Wind Power Forecasting Models’, Energy Procedia, 12, pp. 770–778. doi: https://doi.org/10.1016/j.egypro.2011.10.103.
  • Yu, C. et al. (2018) ‘A novel framework for wind speed prediction based on recurrent neural networks and support vector machine’, Energy Conversion and Management, 178, pp. 137–145. doi: https://doi.org/10.1016/j.enconman.2018.10.008.
  • Yu, R. et al. (2019) ‘Scene learning: Deep convolutional networks for wind power prediction by embedding turbines into grid space’, Applied Energy, 238, pp. 249–257. doi: https://doi.org/10.1016/j.apenergy.2019.01.010.
  • Zhang, Z. et al. (2019) ‘Long Short-Term Memory Network based on Neighborhood Gates for processing complex causality in wind speed prediction’, Energy Conversion and Management, 192, pp. 37–51. doi: https://doi.org/10.1016/j.enconman.2019.04.006.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Industrial Engineering
Journal Section Research Articles
Authors

Zeliha Nur Kiriş 0000-0002-8561-185X

Ömer Faruk Beyca 0000-0002-0944-6813

Fuat Kosanoğlu 0000-0002-1889-3965

Early Pub Date June 14, 2022
Publication Date September 21, 2022
Submission Date May 24, 2022
Published in Issue Year 2022 Volume: 5 Issue: 2

Cite

APA Kiriş, Z. N., Beyca, Ö. F., & Kosanoğlu, F. (2022). Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama. Journal of Intelligent Systems: Theory and Applications, 5(2), 178-188. https://doi.org/10.38016/jista.1120383
AMA Kiriş ZN, Beyca ÖF, Kosanoğlu F. Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama. JISTA. September 2022;5(2):178-188. doi:10.38016/jista.1120383
Chicago Kiriş, Zeliha Nur, Ömer Faruk Beyca, and Fuat Kosanoğlu. “Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama”. Journal of Intelligent Systems: Theory and Applications 5, no. 2 (September 2022): 178-88. https://doi.org/10.38016/jista.1120383.
EndNote Kiriş ZN, Beyca ÖF, Kosanoğlu F (September 1, 2022) Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama. Journal of Intelligent Systems: Theory and Applications 5 2 178–188.
IEEE Z. N. Kiriş, Ö. F. Beyca, and F. Kosanoğlu, “Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama”, JISTA, vol. 5, no. 2, pp. 178–188, 2022, doi: 10.38016/jista.1120383.
ISNAD Kiriş, Zeliha Nur et al. “Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama”. Journal of Intelligent Systems: Theory and Applications 5/2 (September 2022), 178-188. https://doi.org/10.38016/jista.1120383.
JAMA Kiriş ZN, Beyca ÖF, Kosanoğlu F. Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama. JISTA. 2022;5:178–188.
MLA Kiriş, Zeliha Nur et al. “Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama”. Journal of Intelligent Systems: Theory and Applications, vol. 5, no. 2, 2022, pp. 178-8, doi:10.38016/jista.1120383.
Vancouver Kiriş ZN, Beyca ÖF, Kosanoğlu F. Tekrarlayan Sinir Ağları Temelli Rüzgâr Hızı Tahmin Modelleri: Yalova Bölgesinde Bir Uygulama. JISTA. 2022;5(2):178-8.

Journal of Intelligent Systems: Theory and Applications