Research Article
BibTex RIS Cite

Geleceğin Ulaşım Tercihi: Elektrikli Araçlar

Year 2020, Volume: 3 Issue: 1, 34 - 50, 23.04.2020

Abstract

Fosil yakıtlar, ulaşım sektörü başta olmak üzere birçok uygulamada birincil enerji kaynağı olarak kullanılmaktadır. Bu yakıtlara bir alternatif olarak düşünülen yenilenebilir enerji kaynaklarının kullanımı ise gün geçtikçe artmaktadır. Ulaşım sektöründe de benzer etkiyi içten yanmalı motorların yerine alternatif olarak düşünülen elektrikli araçların (EA) kullanımı almaktadır. Bu amaçla, çalışmada öncelikle fosil yakıtların mevcut kullanım durumu, gelecek projeksiyonu ve doğaya etkisi özetlenmiştir. Daha sonra, klasik tip içten yanmalı araç teknolojisinin gelişimi, özellikleri ve verimleri ayrıntılı şekilde sunulmuştur. Elektrikli araçların tarihsel gelişimi incelenerek, mevcut durumda kullanılan tümü elektrikli, hibrit elektrikli ve yakıt hücreli EA’ların yapıları avantajları ve dezavantajları karşılaştırmalı olarak verilmiştir. Ayrıca, çalışmada EA’larda kullanılan batarya teknolojileri ve elektrik motor çeşitleri ayrıntılı olarak incelenmiştir. Son olarak, içten yanmalı ve elektrikli araçlar çevresel etki, enerji verimliliği, menzil ve seyir dinamikleri yönünden karşılaştırılmıştır.

References

  • Abdelghani, D. & Boumediene, A. (2019). Independent control of two induction motors fed by the nine- switch inverter for use in ev applications. Journal of Engineering Science and Technology. 14(5), 2991-3006.
  • Ahmed, S.A., Zhou, S., Tsegay, A.S., Zhu, Y., Malik, A., Ahmad, N. & Legese, Z. (2020) Effects of CO2 ratio in Biogas on Performance, Combustion and Emissions of a Dual-Fuel Diesel Engine. International Energy Journal, 20, 15-38.
  • Alizon, F., Shooter, S.B. & Simpson, T. W. (2009). Henry Ford and the Model T: lessons for product platforming and mass customization. Design Studies, 30(5), 588-605.
  • AVERA. (2010). Battery Hybrid and Fuel Cell Electric Vehicles are the keys to a sustainable mobility, European Association for Battery. Hybrid and Fuel Cell Electric Vehicles <http://www.avere.org/www/Images/files/about_ev/Brochure.pdf>, erişim tarihi 2. 11. 2011.
  • Bottery, M. (2008). Educational leadership, the depletion of oil supplies and the need for an ethic of global sustainability. School Leadership and Management, 28(3), 281-297.
  • BP < https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/primary-energy.html>, erişim tarihi 05.03.2020. Dalcalı, A. (2018). Optimal Design of High-Performance Interior PM Motor for Electric Vehicle. The International Journal of Energy & Engineering Sciences, 3(2) 26-35.
  • Damiano, A., Gatto, G., Marongiu, I., Porru, M. & Serpi, A. (2014). Real-time control strategy of energy storage systems for renewable energy sources exploitation. IEEE Trans. on Sustainable Energy, 5(2), 567-576.
  • Demir, A. (2011). Güncel ve Gelecekteki Otomobil ve Otopark Trendleri. Uluslararası Otopark Politikaları ve Uygulamaları Sempozyumu, İstanbul, Türkiye.
  • Duleep, G., Essen, H.V., Kampman, B. & Grünig, M. (2011). Impacts of electric vehicles, Deliverable 2, Assessment of electric vehicle and battery technology. CE Delft.
  • Ehsani, M., Gao, Y. & Emadi, A. (2009). Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC press.
  • Ehsani, M., Gao, Y., & Gay, S. (2003). Characterization of electric motor drives for traction applications. Proceedings of The 29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke, VA, USA.
  • Emadi, A, Young, J. L. & Kaushik, R. (2008). Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Transactions on industrial electronics, 55(6), 2237-2245.
  • EPA. (2011). New Fuel Economy and Environment Labels for a New Generation of Vehicles. Regulatory Announcement EPA-420-F-11-017. U.S. Environmental Protection Agency.
  • Foley, A. M., Leahy, P., Mckeogh, E. & Gallachoir, B. O. (2010). Electric Vehicles And Displaced Gaseous Emissions. Proceedings of the Vehicle Power and Propulsion Conference, Lille, 1-3.
  • Gillespie, T. D. (1992). Fundamentals of vehicle Dynamics. SAE International
  • Gomez, J.C. & Medhat, M.M. (2008). Impact of EV Battery Chargers on the Power Quality of Distribution Systems. IEEE Transactions on Power Delivery, 18(3), 975- 981.
  • Gondelach, S.J.G. & Faaij, A.P.C. (2012). Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 212, 111-129.
  • Grilo, N., Sousa, D. M. & Roque, A. (2012). AC Motors for Application in a Commercial Electric Vehicle: designing aspects. Proceedings of 16th IEEE Mediterranean Electrotechnical Conference. Tunisia.
  • Gustafsson, T. & Johansson, A. (2015). Comparison between battery electric vehicles and internal combustion engine vehicles fueled by electrofuels. Master’s Thesis in Sustainable Energy Systems, Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden.
  • Hawkins, T., Singh, B., Bettez, G.M. & Stromman, A. H. (2012). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53-64
  • Howey, D.A., Botas, R.F.M., Cussons, B. & Lytton, L. (2011). Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. Transportation Research Part D: Transport and Environment, 16(6), 459-464.
  • IEA < https://www.iea.org/reports/world-energy-outlook-2019>, erişim tarihi 04.03.2020. Jannatkhah, J., Najafi, B. & Ghaebi, H. (2020). Energy and exergy analysis of combined ORC–ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Conversion and Management, 209, 112658.
  • Khan, S.A. & Bohnsack, R. (2020). Influencing the disruptive potential of sustainable technologies through value proposition design: The case of vehicle-to-grid technology. Journal of Cleaner Production, 254, 120018.
  • Lai. J. (2001). Electric Vehicles and Power Electronics. Universidad Technica Federico Santa Maria, Valparaiso, Chili, 1-41
  • Larminie J. & Dicks A. (2000). Fuel Cell Systems Explained. John Wiley&Sons Ltd, London.
  • Luin, B., Petelin, S. & Mansour, F.A. (2019). Microsimulation of electric vehicle energy consumption. Energy 174, 24-32.
  • Mahmoudi, C., Flah, A. & Sbita, L. (2014). An overview of electric Vehicle concept and power management strategies. Proceedings of the International Conference on Electrical Sciences and Technologies in Maghreb, Tunisia.
  • Manzetti, S. & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004–1012.
  • Martinez, C.M., Hu, X., Cao, D., Velenis, E., Gao, B. & Wellers, M. (2017). Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology, 66(6), 4534-4549.
  • Matheys, J., Timmermans, J.M., Autenboer, W.V., Mierlo, J. V., Maggetto, G., Meyer, S., Groof, A.D., Hecq, W. & Bossche, P. V. D. (2006). Comparison of the Environmental impact of 5 Electric Vehicle Battery technologies using LCA. Proceedings of 13th International Conference on Life Cycle Engineering, Belgium, 97-102.
  • Morcos, M.M. (2000). Battery Chargers for Electric Vehicles. IEEE Power Engineering Review, 20(11), 8-11.
  • Moreno. J., Ortuzar. M. E. & Dixon L. W. (2006). Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks. IEEE Transaction on Industrial Electronics, 53(2), 614-623.
  • Naik, R.T., Babu, M.K.G. & Das, L. M. (2016). Performance Studies on CNG Enriched with LPG Operated Variable Speed Spark Ignition Engine. Asian Journal of Innovative Research in Science, Engineering and Technology, 1(3), 1-6.
  • Nanda, G. & Kar, N.C. (2006). A survey and comparison of characteristics of motor drives used in electric vehicles. Proceedings of Canadian Conference on Electrical and Computer Engineering, Canada, 811-814.
  • Ocak, C. (2013). Elektrikli araçlar için üç kademeli yeni bir fırçasız da motoru tasarımı, analizi ve uygulaması. Gazi Üniversitesi / Fen Bilimleri Enstitüsü.
  • Özbay, H. (2017). Şebeke Etkileşimli Yenilenebilir Enerji Destekli Hızlı Batarya Şarj Sisteminin Gerçekleştirilmesi. Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Elektrik-Elektronik Mühendisliği Anabilim Dalı, Karabük.
  • Palacky, P., Brandstetter, P., Chlebis, P., Sladecek, V., Simonik, P. & Slivka, D. (2014). Control algorithms of propulsion unit with induction motors for electric vehicle. Advances in Electrical and Computer Engineering, 14(2), 69-76.
  • Patel, C., Agarwal, A.K., Tiwari, N., Lee, S., Lee, C. S. & Park, S. (2016). Combustion, noise, vibrations and spray characterization for Karanja biodiesel fuelled engine. Applied Thermal Engineering 106, 506-517.
  • Rahman, K. M., Fahimi, B., Suresh, G., Rajarathnam, A. V. & Ehsani, M. (2000). Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues. IEEE Transactions on Industry Applications, 36(1), 111-121.
  • SEI. (2007). Sustainable Energy. Hybrid electric and Battery Electric Vehicles-Technology, costs and Benefits. Sustainable Energy Ireland, Dublin.
  • Şenol, R. Üçgül, İ. & Acar, M. (2006). Yakıt Pili Teknolojisindeki Gelişmeler ve Taşıtlara Uygulanabilirliğinin İncelenmesi. Mühendis ve Makine, 47(563), 37-50.
  • Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. International journal of hydrogen energy, 34(15), 6005-6020.
  • Uçarol, H. & Kural, E. (2009) Ulaşımda Enerji Verimliliği için Hibrid ve Elektrikli Araçlar. Mühendis ve Makine, 50(594), 66-71.
  • Vatani, M., Mirsalim, M. & Zadeh, S. V. (2019). A New Double-Layer Switched Reluctance Motor with a Low Torque Ripple. Proceedings of 27th Iranian Conference on Electrical Engineering, Iran.
  • Weform < https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040>, erişim tarihi 05.03.2020.
  • Westbrook, M. H. (2001). The Electric Car: development and future of battery, hybrid and fuel-cell cars. IET Power and Energy Series 38.
  • Yin, Y., Stecke, K. E. & Li, D. (2018). The evolution of production systems from Industry 2.0 through Industry 4.0. International Journal of Production Research, 56(1-2), 848-861.
  • Zhang, Y., Cao, W., McLoone, S. & Morrow, J. (2016). Design and flux-weakening control of an interior permanent magnet synchronous motor for electric vehicles. IEEE Transactions on Applied Superconductivity, 26(7).
  • Zhang, Q., Deng, J. & Fu, N. (2019). Minimum Copper Loss Direct Torque Control of Brushless DC Motor Drive in Electric and Hybrid Electric Vehicles. IEEE Access, 7, 113264-113271.
Year 2020, Volume: 3 Issue: 1, 34 - 50, 23.04.2020

Abstract

References

  • Abdelghani, D. & Boumediene, A. (2019). Independent control of two induction motors fed by the nine- switch inverter for use in ev applications. Journal of Engineering Science and Technology. 14(5), 2991-3006.
  • Ahmed, S.A., Zhou, S., Tsegay, A.S., Zhu, Y., Malik, A., Ahmad, N. & Legese, Z. (2020) Effects of CO2 ratio in Biogas on Performance, Combustion and Emissions of a Dual-Fuel Diesel Engine. International Energy Journal, 20, 15-38.
  • Alizon, F., Shooter, S.B. & Simpson, T. W. (2009). Henry Ford and the Model T: lessons for product platforming and mass customization. Design Studies, 30(5), 588-605.
  • AVERA. (2010). Battery Hybrid and Fuel Cell Electric Vehicles are the keys to a sustainable mobility, European Association for Battery. Hybrid and Fuel Cell Electric Vehicles <http://www.avere.org/www/Images/files/about_ev/Brochure.pdf>, erişim tarihi 2. 11. 2011.
  • Bottery, M. (2008). Educational leadership, the depletion of oil supplies and the need for an ethic of global sustainability. School Leadership and Management, 28(3), 281-297.
  • BP < https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/primary-energy.html>, erişim tarihi 05.03.2020. Dalcalı, A. (2018). Optimal Design of High-Performance Interior PM Motor for Electric Vehicle. The International Journal of Energy & Engineering Sciences, 3(2) 26-35.
  • Damiano, A., Gatto, G., Marongiu, I., Porru, M. & Serpi, A. (2014). Real-time control strategy of energy storage systems for renewable energy sources exploitation. IEEE Trans. on Sustainable Energy, 5(2), 567-576.
  • Demir, A. (2011). Güncel ve Gelecekteki Otomobil ve Otopark Trendleri. Uluslararası Otopark Politikaları ve Uygulamaları Sempozyumu, İstanbul, Türkiye.
  • Duleep, G., Essen, H.V., Kampman, B. & Grünig, M. (2011). Impacts of electric vehicles, Deliverable 2, Assessment of electric vehicle and battery technology. CE Delft.
  • Ehsani, M., Gao, Y. & Emadi, A. (2009). Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design. CRC press.
  • Ehsani, M., Gao, Y., & Gay, S. (2003). Characterization of electric motor drives for traction applications. Proceedings of The 29th Annual Conference of the IEEE Industrial Electronics Society. Roanoke, VA, USA.
  • Emadi, A, Young, J. L. & Kaushik, R. (2008). Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Transactions on industrial electronics, 55(6), 2237-2245.
  • EPA. (2011). New Fuel Economy and Environment Labels for a New Generation of Vehicles. Regulatory Announcement EPA-420-F-11-017. U.S. Environmental Protection Agency.
  • Foley, A. M., Leahy, P., Mckeogh, E. & Gallachoir, B. O. (2010). Electric Vehicles And Displaced Gaseous Emissions. Proceedings of the Vehicle Power and Propulsion Conference, Lille, 1-3.
  • Gillespie, T. D. (1992). Fundamentals of vehicle Dynamics. SAE International
  • Gomez, J.C. & Medhat, M.M. (2008). Impact of EV Battery Chargers on the Power Quality of Distribution Systems. IEEE Transactions on Power Delivery, 18(3), 975- 981.
  • Gondelach, S.J.G. & Faaij, A.P.C. (2012). Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 212, 111-129.
  • Grilo, N., Sousa, D. M. & Roque, A. (2012). AC Motors for Application in a Commercial Electric Vehicle: designing aspects. Proceedings of 16th IEEE Mediterranean Electrotechnical Conference. Tunisia.
  • Gustafsson, T. & Johansson, A. (2015). Comparison between battery electric vehicles and internal combustion engine vehicles fueled by electrofuels. Master’s Thesis in Sustainable Energy Systems, Department of Energy and Environment, Chalmers University of Technology, Gothenburg, Sweden.
  • Hawkins, T., Singh, B., Bettez, G.M. & Stromman, A. H. (2012). Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 17(1), 53-64
  • Howey, D.A., Botas, R.F.M., Cussons, B. & Lytton, L. (2011). Comparative measurements of the energy consumption of 51 electric, hybrid and internal combustion engine vehicles. Transportation Research Part D: Transport and Environment, 16(6), 459-464.
  • IEA < https://www.iea.org/reports/world-energy-outlook-2019>, erişim tarihi 04.03.2020. Jannatkhah, J., Najafi, B. & Ghaebi, H. (2020). Energy and exergy analysis of combined ORC–ERC system for biodiesel-fed diesel engine waste heat recovery. Energy Conversion and Management, 209, 112658.
  • Khan, S.A. & Bohnsack, R. (2020). Influencing the disruptive potential of sustainable technologies through value proposition design: The case of vehicle-to-grid technology. Journal of Cleaner Production, 254, 120018.
  • Lai. J. (2001). Electric Vehicles and Power Electronics. Universidad Technica Federico Santa Maria, Valparaiso, Chili, 1-41
  • Larminie J. & Dicks A. (2000). Fuel Cell Systems Explained. John Wiley&Sons Ltd, London.
  • Luin, B., Petelin, S. & Mansour, F.A. (2019). Microsimulation of electric vehicle energy consumption. Energy 174, 24-32.
  • Mahmoudi, C., Flah, A. & Sbita, L. (2014). An overview of electric Vehicle concept and power management strategies. Proceedings of the International Conference on Electrical Sciences and Technologies in Maghreb, Tunisia.
  • Manzetti, S. & Mariasiu, F. (2015). Electric vehicle battery technologies: From present state to future systems. Renewable and Sustainable Energy Reviews, 51, 1004–1012.
  • Martinez, C.M., Hu, X., Cao, D., Velenis, E., Gao, B. & Wellers, M. (2017). Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology, 66(6), 4534-4549.
  • Matheys, J., Timmermans, J.M., Autenboer, W.V., Mierlo, J. V., Maggetto, G., Meyer, S., Groof, A.D., Hecq, W. & Bossche, P. V. D. (2006). Comparison of the Environmental impact of 5 Electric Vehicle Battery technologies using LCA. Proceedings of 13th International Conference on Life Cycle Engineering, Belgium, 97-102.
  • Morcos, M.M. (2000). Battery Chargers for Electric Vehicles. IEEE Power Engineering Review, 20(11), 8-11.
  • Moreno. J., Ortuzar. M. E. & Dixon L. W. (2006). Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks. IEEE Transaction on Industrial Electronics, 53(2), 614-623.
  • Naik, R.T., Babu, M.K.G. & Das, L. M. (2016). Performance Studies on CNG Enriched with LPG Operated Variable Speed Spark Ignition Engine. Asian Journal of Innovative Research in Science, Engineering and Technology, 1(3), 1-6.
  • Nanda, G. & Kar, N.C. (2006). A survey and comparison of characteristics of motor drives used in electric vehicles. Proceedings of Canadian Conference on Electrical and Computer Engineering, Canada, 811-814.
  • Ocak, C. (2013). Elektrikli araçlar için üç kademeli yeni bir fırçasız da motoru tasarımı, analizi ve uygulaması. Gazi Üniversitesi / Fen Bilimleri Enstitüsü.
  • Özbay, H. (2017). Şebeke Etkileşimli Yenilenebilir Enerji Destekli Hızlı Batarya Şarj Sisteminin Gerçekleştirilmesi. Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Elektrik-Elektronik Mühendisliği Anabilim Dalı, Karabük.
  • Palacky, P., Brandstetter, P., Chlebis, P., Sladecek, V., Simonik, P. & Slivka, D. (2014). Control algorithms of propulsion unit with induction motors for electric vehicle. Advances in Electrical and Computer Engineering, 14(2), 69-76.
  • Patel, C., Agarwal, A.K., Tiwari, N., Lee, S., Lee, C. S. & Park, S. (2016). Combustion, noise, vibrations and spray characterization for Karanja biodiesel fuelled engine. Applied Thermal Engineering 106, 506-517.
  • Rahman, K. M., Fahimi, B., Suresh, G., Rajarathnam, A. V. & Ehsani, M. (2000). Advantages of Switched Reluctance Motor Applications to EV and HEV: Design and Control Issues. IEEE Transactions on Industry Applications, 36(1), 111-121.
  • SEI. (2007). Sustainable Energy. Hybrid electric and Battery Electric Vehicles-Technology, costs and Benefits. Sustainable Energy Ireland, Dublin.
  • Şenol, R. Üçgül, İ. & Acar, M. (2006). Yakıt Pili Teknolojisindeki Gelişmeler ve Taşıtlara Uygulanabilirliğinin İncelenmesi. Mühendis ve Makine, 47(563), 37-50.
  • Thomas, C. E. (2009). Fuel cell and battery electric vehicles compared. International journal of hydrogen energy, 34(15), 6005-6020.
  • Uçarol, H. & Kural, E. (2009) Ulaşımda Enerji Verimliliği için Hibrid ve Elektrikli Araçlar. Mühendis ve Makine, 50(594), 66-71.
  • Vatani, M., Mirsalim, M. & Zadeh, S. V. (2019). A New Double-Layer Switched Reluctance Motor with a Low Torque Ripple. Proceedings of 27th Iranian Conference on Electrical Engineering, Iran.
  • Weform < https://www.weforum.org/agenda/2016/04/the-number-of-cars-worldwide-is-set-to-double-by-2040>, erişim tarihi 05.03.2020.
  • Westbrook, M. H. (2001). The Electric Car: development and future of battery, hybrid and fuel-cell cars. IET Power and Energy Series 38.
  • Yin, Y., Stecke, K. E. & Li, D. (2018). The evolution of production systems from Industry 2.0 through Industry 4.0. International Journal of Production Research, 56(1-2), 848-861.
  • Zhang, Y., Cao, W., McLoone, S. & Morrow, J. (2016). Design and flux-weakening control of an interior permanent magnet synchronous motor for electric vehicles. IEEE Transactions on Applied Superconductivity, 26(7).
  • Zhang, Q., Deng, J. & Fu, N. (2019). Minimum Copper Loss Direct Torque Control of Brushless DC Motor Drive in Electric and Hybrid Electric Vehicles. IEEE Access, 7, 113264-113271.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Harun Özbay 0000-0003-1068-244X

Cemil Közkurt 0000-0003-1407-9867

Adem Dalcalı 0000-0002-9940-0471

Mehmet Tektaş 0000-0001-9564-8069

Publication Date April 23, 2020
Submission Date March 31, 2020
Acceptance Date April 10, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Özbay, H., Közkurt, C., Dalcalı, A., Tektaş, M. (2020). Geleceğin Ulaşım Tercihi: Elektrikli Araçlar. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 3(1), 34-50.