Demiryolu araçlarında amortisör arızalarının sürüş konforu üzerindeki etkilerinin incelenmesi
Year 2023,
Volume: 6 Issue: 2, 253 - 266, 23.10.2023
Haluk Yılmaz
,
İbrahim Kocabaş
Abstract
Bu çalışmada iki boji ve sekiz dingile sahip bir raylı sistem aracının dikey yöndeki dinamik karakteri incelenmiştir. Birincil ve ikincil süspansiyon sistemlerinde yer alan viskoz damperlerin ayrı ayrı arıza durumları dikkate alınmıştır. Her bir arıza durumunda araç gövdesinde meydana gelen frekans cevapları incelenerek sürüş konforu ve seyir güvenliği açısından değerlendirmeler yapılmıştır. Raylı sistem aracının 60 km/s sabit seyir hızı dikkate alınarak 10 mm derinliğinde lokal bir ray çökmesi üzerindeki dinamik tepkileri incelenmiştir. Araç gövdesinin 10 serbestlik dereceli dinamik modeli oluşturulmuştur. Elde edilen denklemler Simulink paket programında blok diyagramları oluşturularak Runge-Kutta (Ode45) tekniği ile nümerik olarak çözülmüştür. Araç gövdesinin dikey ve açısal yöndeki frekans cevapları alınarak ivme değerleri hesaplanmıştır. Benzer şekilde spektral güç yoğunluğu fonksiyonları da elde edilmiştir. Elde edilen sonuçlarda damper arızalarının sürüş konforunu bozucu etkiler ortaya çıkardığı tespit edilmiştir. Boji 1 ve 2’nin birinci damper arızaları titreşim genliklerini arttığından dolayı kritik olarak değerlendirilmiştir. Birincil süspansiyon sistemindeki damper arızalarının kritik olduğu ve ikincil süspansiyon sistemindekilerinin ise sürüş konforunu önemli ölçüde değiştirmediği sonucuna varılmıştır.
References
- F.T.K. Au, J.J. Wang, Y.K. Cheung. (2002) Impact study of cable-stayed railway bridges with random rail irregularities, Eng. Struct. 24 529–541
- G. Tao, Z. Wen, X. Liang, D. Ren, X. Jin. (2019). An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures, Veh. Syst. Dyn. 57 1–16
- Hao JH, Zeng J and Wu PB. (2006). Optimization of vertical random vibration isolation and suspension parameters of railway passenger car systems. J China Railway Soc, 28: 35–40
- König, P., Salcher, P., Adam, C., & Hirzinger, B. (2021). Dynamic analysis of railway bridges exposed to high-speed trains considering the vehicle–track–bridge–soil interaction. Acta Mechanica, 232(11), 4583–4608. https://doi.org/10.1007/s00707-021-03079-1
- L. Xu, W. Zhai, J. Gao. (2017). A probabilistic model for track random irregularities in vehicle/track coupled dynamics, Appl. Math. Model., 51 145–158. [8]
- Lee, N. J., & Kang, C. G. (2015). The effect of a variable disc pad friction coefficient for the mechanical brake system of a railway vehicle. PLoS ONE, 10(8), 1–18. https://doi.org/10.1371/journal.pone.0135459
- Lei, S., Ge, Y., & Li, Q. (2020). Effect and its mechanism of spatial coherence of track irregularity on dynamic responses of railway vehicles. Mechanical Systems and Signal Processing, 145. https://doi.org/10.1016/j.ymssp.2020.106957
- M. Majka, M. Hartnett. (2009). Dynamic response of bridges to moving trains: a study on effects of random track irregularities and bridge skewness, Comput. Struct., 87 1233–1252
- Nejlaoui M, Houidi A, Affi Z and Romdhane L. (2013) Multiobjective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criteria. Simul Model Pract Theory, 30 21–34
- Thoresson MJ, Uys PE, Els PS and Snyman JA. (2009). Efficient optimisation of a vehicle suspension system, using a gra- dient-based approximation method, part 1: mathematical modelling. Math Comput Model, 50 1421–1436
- X. Sheng, C.J.C. Jones, D.J. Thompson. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities, J. Sound Vibr. 272 937–965
- Yang Y, Zhang XF, Zhang ZF and Xu Y. (2014). Sensitivity analysis of railway vehicle suspension parameters on riding stability. J Railway Sci Engng, 11 116–120
- Yang, Y., Zeng, W., Qiu, W. S., & Wang, T. (2016). Optimization of the suspension parameters of a rail vehicle based on a virtual prototype Kriging surrogate model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(8), 1890–1898. https://doi.org/10.1177/0954409715617213
- Yang, Y., Zeng, W., Qiu, W. S., & Wang, T. (2016). Optimization of the suspension parameters of a rail vehicle based on a virtual prototype Kriging surrogate model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(8), 1890–1898. https://doi.org/10.1177/0954409715617213
- Youcef, K., Sabiha, T., El Mostafa, D., Ali, D., & Bachir, M. (2013). Dynamic analysis of train-bridge system and riding comfort of trains with rail irregularities. Journal of Mechanical Science and Technology, 27(4), 951–962. https://doi.org/10.1007/s12206-013-0206-8
- Zboinski, K., & Golofit-Stawinska, M. (2022). Determination and Comparative Analysis of Critical Velocity for Five Objects of Railway Vehicle Class. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116649
Year 2023,
Volume: 6 Issue: 2, 253 - 266, 23.10.2023
Haluk Yılmaz
,
İbrahim Kocabaş
References
- F.T.K. Au, J.J. Wang, Y.K. Cheung. (2002) Impact study of cable-stayed railway bridges with random rail irregularities, Eng. Struct. 24 529–541
- G. Tao, Z. Wen, X. Liang, D. Ren, X. Jin. (2019). An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures, Veh. Syst. Dyn. 57 1–16
- Hao JH, Zeng J and Wu PB. (2006). Optimization of vertical random vibration isolation and suspension parameters of railway passenger car systems. J China Railway Soc, 28: 35–40
- König, P., Salcher, P., Adam, C., & Hirzinger, B. (2021). Dynamic analysis of railway bridges exposed to high-speed trains considering the vehicle–track–bridge–soil interaction. Acta Mechanica, 232(11), 4583–4608. https://doi.org/10.1007/s00707-021-03079-1
- L. Xu, W. Zhai, J. Gao. (2017). A probabilistic model for track random irregularities in vehicle/track coupled dynamics, Appl. Math. Model., 51 145–158. [8]
- Lee, N. J., & Kang, C. G. (2015). The effect of a variable disc pad friction coefficient for the mechanical brake system of a railway vehicle. PLoS ONE, 10(8), 1–18. https://doi.org/10.1371/journal.pone.0135459
- Lei, S., Ge, Y., & Li, Q. (2020). Effect and its mechanism of spatial coherence of track irregularity on dynamic responses of railway vehicles. Mechanical Systems and Signal Processing, 145. https://doi.org/10.1016/j.ymssp.2020.106957
- M. Majka, M. Hartnett. (2009). Dynamic response of bridges to moving trains: a study on effects of random track irregularities and bridge skewness, Comput. Struct., 87 1233–1252
- Nejlaoui M, Houidi A, Affi Z and Romdhane L. (2013) Multiobjective robust design optimization of rail vehicle moving in short radius curved tracks based on the safety and comfort criteria. Simul Model Pract Theory, 30 21–34
- Thoresson MJ, Uys PE, Els PS and Snyman JA. (2009). Efficient optimisation of a vehicle suspension system, using a gra- dient-based approximation method, part 1: mathematical modelling. Math Comput Model, 50 1421–1436
- X. Sheng, C.J.C. Jones, D.J. Thompson. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities, J. Sound Vibr. 272 937–965
- Yang Y, Zhang XF, Zhang ZF and Xu Y. (2014). Sensitivity analysis of railway vehicle suspension parameters on riding stability. J Railway Sci Engng, 11 116–120
- Yang, Y., Zeng, W., Qiu, W. S., & Wang, T. (2016). Optimization of the suspension parameters of a rail vehicle based on a virtual prototype Kriging surrogate model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(8), 1890–1898. https://doi.org/10.1177/0954409715617213
- Yang, Y., Zeng, W., Qiu, W. S., & Wang, T. (2016). Optimization of the suspension parameters of a rail vehicle based on a virtual prototype Kriging surrogate model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(8), 1890–1898. https://doi.org/10.1177/0954409715617213
- Youcef, K., Sabiha, T., El Mostafa, D., Ali, D., & Bachir, M. (2013). Dynamic analysis of train-bridge system and riding comfort of trains with rail irregularities. Journal of Mechanical Science and Technology, 27(4), 951–962. https://doi.org/10.1007/s12206-013-0206-8
- Zboinski, K., & Golofit-Stawinska, M. (2022). Determination and Comparative Analysis of Critical Velocity for Five Objects of Railway Vehicle Class. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116649