Research Article
BibTex RIS Cite

Sıçanlarda Çekal Ligasyon ve Delme Kaynaklı Sepsis Modeli

Year 2022, Volume: 2 Issue: 2, 81 - 89, 28.09.2022

Abstract

Sepsis, yüksek ölüm oranına sahip dünya çapında bir sağlık sorunudur. Travma, cerrahi ve enfeksiyon gibi çeşitli durumlardan kaynaklanabilir. Böbrek ve akciğerler sepsise bağlı hasarlanan organlar arasında yer alır. Çekal ligasyon ve delme (CLP) klinik sepsise benzerdir. Klinik divertikülit veya apandisit perforasyonlarını taklit etmek için tercih edilir. Bu çalışmayı, ileride gerçekleştirmeyi planladığımız CLP ile indüklenen sepsise karşı koruyucu ajan çalışmaları için bir ön çalışma olarak tasarladık. Literatürde bulunan deneysel CLP modelleriyle uyumlu biyokimyasal ve histolojik sonuçları bulmayı hedefledik. Çalışmada 20 adet dişi Wistar Albino sıçan kullandık. Rastgele iki grup oluşturduk; sham grubu ve CLP grubu (n=10). İnterlökin 1-beta (IL-1β), IL-6 ve IL-10 sitokin seviyelerini ölçtük. Böbrek ve akciğer dokularında miyeloperoksidaz (MPO), süperoksit dismutaz (SOD), malondialdehit (MDA) ve glutatyon (GSH) düzeylerini belirledik. Ayrıca doku örneklerini histopatolojik ve immünohistokimyasal değerlendirme için inceledik. CLP grubunda sepsise bağlı güçlü bir immün yanıtın göstergesi olarak sitokin seviyeleri ve oksidan parametreleri artarken antioksidan parametreler azaldı. Ayrıca, histopatolojik ve immünohistokimyasal bulgular biyokimyasal bulguları sepsis lehine destekledi. Elde ettiğimiz sonuçlar ileride CLP ile indüklenen sepsis modeli olarak kullanabileceğimiz başarılı bir CLP modelini gösteren anlamlı bir sepsis tablosu oluşturdu.

Supporting Institution

Atatürk Üniversitesi

Project Number

8791

References

  • 1. Akpinar E., Halici Z., Cadirci E., Bayir Y., Karakus E., Calik M., Topcu A., & Polat B., 2014. What is the role of renin inhibition during rat septic conditions: preventive effect of aliskiren on sepsis-induced lung injury. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(10), 969-978.
  • 2. Andrews P., Azoulay E., Antonelli M., 2006. Year in review in intensive care medicine 2005. I. Acute respiratory failure and acute lung injury, ventilation, hemodynamics, education, renal failure. Intensive Care Medicine, 32(2), 207-216.
  • 3. Angus DC., & Wax RS., 2001. Epidemiology of sepsis: An update. Critical Care Medicine, 46-47.
  • 4. Bastarache JA., & Matthay MA., 2013. Cecal Ligation Model of Sepsis in Mice: New Insights*. Critical Care Medicine, 41(1).
  • 5. Bayraktutan Z., Dincer B., Keskin H., Kose D., Bilen A., Toktay E., Sirin B., & Halici Z., 2021. Roflumilast as a Potential Therapeutic Agent for Cecal Ligation and Puncture-Induced Septic Lung Injury. Journal of Investigative Surgery, 1-9.
  • 6. Benz F., Roy S., Trautwein C., Roderburg C., & Luedde T., 2016. Circulating MicroRNAs as Biomarkers for Sepsis. International Journal of Molecular Sciences, 17(1).
  • 7. Bi J., Cui R., Li Z., Liu C., & Zhang J., 2017. Astaxanthin alleviated acute lung injury by inhibiting oxidative/nitrative stress and the inflammatory response in mice. Biomedicine & Pharmacotherapy, 95, 974-982.
  • 8. Bradley PP., Priebat DA., Christensen RD., & Rothstein G., 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. The Journal of investigative dermatology, 78(3), 206-209.
  • 9. Cadirci E., Altunkaynak BZ., Halici Z., Odabasoglu F., Uyanik MH., Gundogdu C., Suleyman H., Halici M., Albayrak M., & Unal B., 2010. Α-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock, 33(5).
  • 10. Cecconi M., Evans L., Levy M., & Rhodes A., 2018. Sepsis and septic shock. The Lancet, 392(10141), 75-87.
  • 11. Cheng Y., Hu X., Liu C., Chen M., Wang J., Wang M., Gao F., Han J., Zhang C., Sun D., & Min R., 2017. Gelsolin Inhibits the Inflammatory Process Induced by LPS. Cellular Physiology and Biochemistry, 41(1), 205-212.
  • 12. Dellinger RP., Levy MM., Rhodes A., 2013. The Surviving Sepsis Campaign Guidelines Committee including The Pediatric, S. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine, 39(2), 165-228.
  • 13. Dröge W., 2002. Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47-95.
  • 14. Fang YZ., Yang S., & Wu G., 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18(10), 872-879.
  • 15. Galanos C., & Freudenberg MA., 1993. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology, 187(3), 346-356.
  • 16. Hu J., Tang Z., Xu J., Ge W., Hu Q., He F., Zheng G., Jiang L., Yang Z., & Tang W., 2019. The inhibitor of interleukin-3 receptor protects against sepsis in a rat model of cecal ligation and puncture. Mol Immunol, 109, 71-80.
  • 17. Hu ML., 1994. Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233(C), 380-385.
  • 18. Hubbard WJ., Choudhry M., Schwacha MG., Kerby JD., Rue LW., 3rd Bland K. I., & Chaudry I. H., 2005. Cecal ligation and puncture. Shock, 24 Suppl 1, 52-57.
  • 19. Kostakoglu U., Topcu A., Atak M., Tumkaya L., Mercantepe T., & Uydu HA., 2020. The protective effects of angiotensin-converting enzyme inhibitor against cecal ligation and puncture-induced sepsis via oxidative stress and inflammation. Life Sci, 241, 117051.
  • 20. Lan KC., Chao SC., Wu HY., Chiang CL., Wang CC., Liu SH., & Weng TI., 2017. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Scientific Reports, 7(1), 12026.
  • 21. Lingaraju MC., Pathak NN., Begum J., 2015. Betulinic acid attenuates lung injury by modulation of inflammatory cytokine response in experimentally-induced polymicrobial sepsis in mice. Cytokine, 71(1), 101-108.
  • 22. Liu CH., Zhang WD., Wang JJ., & Feng SD., 2016. Senegenin Ameliorate Acute Lung Injury Through Reduction of Oxidative Stress and Inhibition of Inflammation in Cecal Ligation and Puncture-Induced Sepsis Rats. Inflammation, 39(2), 900-906.
  • 23. Liu S., Yue Y., Pan P., Zhang L., Su X., Li H., Li H., Li Y., Dai M., Li Q., & Mao Z., 2019. IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice. Inflammation, 42(1), 387-403.
  • 24. Makled MN., El-Awady MS., Abdelaziz RR., Atwan N., Guns ET., Gameil NM., Shehab El-Din AB., & Ammar EM., 2016. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF‐κB pathway inhibition. Environmental Toxicology and Pharmacology, 43, 182-192.
  • 25. Mikkelsen ME., Shah CV., Meyer NJ., Gaieski D. F., Lyon S., Miltiades AN., Goyal M., Fuchs BD., Bellamy SL., & Christie JD., 2013. The Epidemiology of Acute Respiratory Distress Syndrome in Patients Presenting to the Emergency Department With Severe Sepsis. Shock, 40(5).
  • 26. Oberholzer A., Oberholzer C., & Moldawer LL., 2002. Interleukin-10: A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Critical Care Medicine, 56-60.
  • 27. Ohkawa H., Ohishi N., & Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.
  • 28. Park I., Kim M., Choe K., Song E., Seo H., Hwang Y., Ahn J., Lee SH., Lee JH., Jo YH., Kim K., Koh G. Y., & Kim P., 2019. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J, 53(3).
  • 29. Polat B., Cadirci E., Halici Z., Bayir Y., Unal D., Bilgin BC., Yuksel TN., & Vancelik S., 2013. The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn-Schmiedeberg's Archives of Pharmacology, 386(7), 635-643.
  • 30. Potjo M., Theron AJ., Cockeran R., Sipholi NN., Steel HC., Bale TV., Meyer PWA., Anderson R., & Tintinger GR., 2019. Interleukin-10 and interleukin-1 receptor antagonist distinguish between patients with sepsis and the systemic inflammatory response syndrome (SIRS). Cytokine, 120, 227-233.
  • 31. Prescott HC., & Angus DC., 2018. Enhancing Recovery From Sepsis: A Review. JAMA, 319(1), 62-75.
  • 32. Rahman I., Biswas SK., Jimenez LA., Torres M., & Forman HJ., 2004. Glutathione, Stress Responses, and Redox Signaling in Lung Inflammation. Antioxidants & Redox Signaling, 7(1-2), 42-59.
  • 33. Remick DG., Newcomb DE., Bolgos GL., & Call D. R., 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock, 13(2), 110-11.
  • 34. Rhodes A., Evans LE., Alhazzani W., Levy MM., Antonelli M., Ferrer R., Kumar A., 2017. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine, 45(3), 486-552.
  • 35. Rittirsch D., Huber-Lang MS., Flierl MA., & Ward PA., 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc, 4(1), 31-36.
  • 36. Ruiz S., Vardon-Bounes F., Merlet-Dupuy V., Conil JM., Buléon M., Fourcade O., Tack I., & Minville V., 2016. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive care medicine experimental, 4(1), 22-22.
  • 37. Sadowitz B., Roy S., Gatto LA., Habashi N., & Nieman G., 2011. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Review of Anti-infective Therapy, 9(12), 1169-1178.
  • 38. Schabbauer G., (2012). Polymicrobial sepsis models: CLP versus CASP. Drug Discovery Today: Disease Models, 9(1), e17-e21.
  • 39. Seibt TM., Proneth B., & Conrad M., 2019. Role of GPX4 in ferroptosis and its pharmacological implication. Free radical biology & medicine, 133, 144-152.
  • 40. Seymour CW., Liu VX., Iwashyna TJ., Brunkhorst FM., Rea TD., Scherag A., 2016. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 762-774.
  • 41. Song J., Hu D., He C., Wang T., Liu X., Ma L., Lin Z., & Chen Z., 2013. Novel biomarkers for early prediction of sepsis-induced disseminated intravascular coagulation in a mouse cecal ligation and puncture model. J Inflamm (Lond), 10(1), 7.
  • 42. Song L., Zou Y., & Cao Z., 2018. Comparison of two different models of sepsis induced by cecal ligation and puncture in rats. Journal of Surgical Research, 229, 277-282.
  • 43. Srivastava A., Maggs JL., Antoine DJ., Williams DP., Smith DA., & Park BK., 2010. Role of Reactive Metabolites in Drug-Induced Hepatotoxicity. In J. Uetrecht (Ed.), Adverse Drug Reactions, 165-194. 44. Sun Y. Oberley LW., & Li Y., 1988. A simple method for clinical assay of superoxide dismutase. Clin Chem, 34(3), 497-500.
  • 45. Till GO., Hatherill JR., Tourtellotte WW., Lutz MJ., & Ward PA., 1985. Lipid peroxidation and acute lung injury after thermal trauma to skin. Evidence of a role for hydroxyl radical. American Journal of Pathology, 119(3), 376-384.
  • 46. Tripathi AS., Awasthi S., Maurya RK., Yasir M., Mohapatra L., & Srivastav V., 2022. Protective effect of vanillin on the management of cecal ligation and puncture induced sepsis rat model. Microbial Pathogenesis, 165, 105493-105493.
  • 47. Wang X., An X., Wang X., Hu X., Bi J., Tong L., Yang D., Song Y., & Bai C., 2019. Peroxiredoxin 6 knockout aggravates cecal ligation and puncture-induced acute lung injury. International immunopharmacology, 68, 252-258.
  • 48. Wang Y., Wang X., Zhang L., & Zhang R., 2018. Alleviation of Acute Lung Injury in Rats with Sepsis by Resveratrol via the Phosphatidylinositol 3-Kinase/Nuclear Factor-Erythroid 2 Related Factor 2/Heme Oxygenase-1 (PI3K/Nrf2/HO-1) Pathway. Medical Science Monitor, 24, 3604-3611.
  • 49. Wichterman KA., Baue AE., & Chaudry IH., 1980. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res, 29(2), 189-201.https://doi.org/10.1016/00224804(80)90037-2.
  • 50. Xiao M., Zhu T., Zhang W., Wang T., Shen YC., Wan QF., & Wen FQ., 2014. Emodin Ameliorates LPS-Induced Acute Lung Injury, Involving the Inactivation of NF-κB in Mice. International Journal of Molecular Sciences, 15(11).
  • 51. Zhang J., Ma L., Hashimoto Y., Wan X., Shan J., Qu Y., & Hashimoto K., 2021. (R)-Ketamine ameliorates lethal inflammatory responses and multi-organ injury in mice induced by cecum ligation and puncture. Life Sciences, 284, 119882.
  • 52. Zhao W., Jia L., Yang HJ., Xue X., Xu WX., Cai JQ., Guo RJ., & Cao CC., 2018. Taurine enhances the protective effect of Dexmedetomidine on sepsis-induced acute lung injury via balancing the immunological system. Biomedicine & Pharmacotherapy, 103, 1362-1368.
  • 53. Zimmerman JJ., Akhtar SR., Caldwell E., & Rubenfeld GD., 2009. Incidence and Outcomes of Pediatric Acute Lung Injury. Pediatrics, 124(1), 87-95.

Cecal Ligation and Puncture-Induced Sepsis Model in Rats

Year 2022, Volume: 2 Issue: 2, 81 - 89, 28.09.2022

Abstract

Sepsis is a worldwide health problem with a high mortality rate. It may result from various conditions, including trauma, surgery, and infection. Kidneys and lungs rank among the sepsis-induced injured organs. Cecal ligation and puncture (CLP) is similar to clinical sepsis and is preferred to imitate clinical diverticulitis or appendicitis perforations. Here, we designed a CLP model as a prestudy for further protective agent studies against CLP-induced sepsis. We aimed to find biochemical and histological results compatible with previous experimental CLP models in the literature. We used 20 female Wistar Albino rats. We created two randomized groups, a sham group, and a CLP group (n=10). We measured interleukin 1-beta (IL-1β), IL-6, and IL-10 cytokine levels. We assessed myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels in renal and lung tissues. We also examined the tissue samples for histopathological and immunohistochemical evaluation. Cytokine levels and oxidant parameters were increased, and antioxidant parameters decreased in the CLP group as an indicator of a strong immune response due to sepsis. Histopathological and immunohistochemical findings supported the biochemical findings on behalf of sepsis. The results demonstrated a meaningful sepsis picture indicating a successful CLP model, which we may prefer to use in further CLP-induced sepsis models.

Project Number

8791

References

  • 1. Akpinar E., Halici Z., Cadirci E., Bayir Y., Karakus E., Calik M., Topcu A., & Polat B., 2014. What is the role of renin inhibition during rat septic conditions: preventive effect of aliskiren on sepsis-induced lung injury. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(10), 969-978.
  • 2. Andrews P., Azoulay E., Antonelli M., 2006. Year in review in intensive care medicine 2005. I. Acute respiratory failure and acute lung injury, ventilation, hemodynamics, education, renal failure. Intensive Care Medicine, 32(2), 207-216.
  • 3. Angus DC., & Wax RS., 2001. Epidemiology of sepsis: An update. Critical Care Medicine, 46-47.
  • 4. Bastarache JA., & Matthay MA., 2013. Cecal Ligation Model of Sepsis in Mice: New Insights*. Critical Care Medicine, 41(1).
  • 5. Bayraktutan Z., Dincer B., Keskin H., Kose D., Bilen A., Toktay E., Sirin B., & Halici Z., 2021. Roflumilast as a Potential Therapeutic Agent for Cecal Ligation and Puncture-Induced Septic Lung Injury. Journal of Investigative Surgery, 1-9.
  • 6. Benz F., Roy S., Trautwein C., Roderburg C., & Luedde T., 2016. Circulating MicroRNAs as Biomarkers for Sepsis. International Journal of Molecular Sciences, 17(1).
  • 7. Bi J., Cui R., Li Z., Liu C., & Zhang J., 2017. Astaxanthin alleviated acute lung injury by inhibiting oxidative/nitrative stress and the inflammatory response in mice. Biomedicine & Pharmacotherapy, 95, 974-982.
  • 8. Bradley PP., Priebat DA., Christensen RD., & Rothstein G., 1982. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. The Journal of investigative dermatology, 78(3), 206-209.
  • 9. Cadirci E., Altunkaynak BZ., Halici Z., Odabasoglu F., Uyanik MH., Gundogdu C., Suleyman H., Halici M., Albayrak M., & Unal B., 2010. Α-lipoic acid as a potential target for the treatment of lung injury caused by cecal ligation and puncture-induced sepsis model in rats. Shock, 33(5).
  • 10. Cecconi M., Evans L., Levy M., & Rhodes A., 2018. Sepsis and septic shock. The Lancet, 392(10141), 75-87.
  • 11. Cheng Y., Hu X., Liu C., Chen M., Wang J., Wang M., Gao F., Han J., Zhang C., Sun D., & Min R., 2017. Gelsolin Inhibits the Inflammatory Process Induced by LPS. Cellular Physiology and Biochemistry, 41(1), 205-212.
  • 12. Dellinger RP., Levy MM., Rhodes A., 2013. The Surviving Sepsis Campaign Guidelines Committee including The Pediatric, S. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine, 39(2), 165-228.
  • 13. Dröge W., 2002. Free radicals in the physiological control of cell function. Physiological reviews, 82(1), 47-95.
  • 14. Fang YZ., Yang S., & Wu G., 2002. Free radicals, antioxidants, and nutrition. Nutrition, 18(10), 872-879.
  • 15. Galanos C., & Freudenberg MA., 1993. Mechanisms of endotoxin shock and endotoxin hypersensitivity. Immunobiology, 187(3), 346-356.
  • 16. Hu J., Tang Z., Xu J., Ge W., Hu Q., He F., Zheng G., Jiang L., Yang Z., & Tang W., 2019. The inhibitor of interleukin-3 receptor protects against sepsis in a rat model of cecal ligation and puncture. Mol Immunol, 109, 71-80.
  • 17. Hu ML., 1994. Measurement of protein thiol groups and glutathione in plasma. Methods in Enzymology, 233(C), 380-385.
  • 18. Hubbard WJ., Choudhry M., Schwacha MG., Kerby JD., Rue LW., 3rd Bland K. I., & Chaudry I. H., 2005. Cecal ligation and puncture. Shock, 24 Suppl 1, 52-57.
  • 19. Kostakoglu U., Topcu A., Atak M., Tumkaya L., Mercantepe T., & Uydu HA., 2020. The protective effects of angiotensin-converting enzyme inhibitor against cecal ligation and puncture-induced sepsis via oxidative stress and inflammation. Life Sci, 241, 117051.
  • 20. Lan KC., Chao SC., Wu HY., Chiang CL., Wang CC., Liu SH., & Weng TI., 2017. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Scientific Reports, 7(1), 12026.
  • 21. Lingaraju MC., Pathak NN., Begum J., 2015. Betulinic acid attenuates lung injury by modulation of inflammatory cytokine response in experimentally-induced polymicrobial sepsis in mice. Cytokine, 71(1), 101-108.
  • 22. Liu CH., Zhang WD., Wang JJ., & Feng SD., 2016. Senegenin Ameliorate Acute Lung Injury Through Reduction of Oxidative Stress and Inhibition of Inflammation in Cecal Ligation and Puncture-Induced Sepsis Rats. Inflammation, 39(2), 900-906.
  • 23. Liu S., Yue Y., Pan P., Zhang L., Su X., Li H., Li H., Li Y., Dai M., Li Q., & Mao Z., 2019. IRF-1 Intervention in the Classical ROS-Dependent Release of NETs during LPS-Induced Acute Lung Injury in Mice. Inflammation, 42(1), 387-403.
  • 24. Makled MN., El-Awady MS., Abdelaziz RR., Atwan N., Guns ET., Gameil NM., Shehab El-Din AB., & Ammar EM., 2016. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF‐κB pathway inhibition. Environmental Toxicology and Pharmacology, 43, 182-192.
  • 25. Mikkelsen ME., Shah CV., Meyer NJ., Gaieski D. F., Lyon S., Miltiades AN., Goyal M., Fuchs BD., Bellamy SL., & Christie JD., 2013. The Epidemiology of Acute Respiratory Distress Syndrome in Patients Presenting to the Emergency Department With Severe Sepsis. Shock, 40(5).
  • 26. Oberholzer A., Oberholzer C., & Moldawer LL., 2002. Interleukin-10: A complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Critical Care Medicine, 56-60.
  • 27. Ohkawa H., Ohishi N., & Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 95(2), 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.
  • 28. Park I., Kim M., Choe K., Song E., Seo H., Hwang Y., Ahn J., Lee SH., Lee JH., Jo YH., Kim K., Koh G. Y., & Kim P., 2019. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J, 53(3).
  • 29. Polat B., Cadirci E., Halici Z., Bayir Y., Unal D., Bilgin BC., Yuksel TN., & Vancelik S., 2013. The protective effect of amiodarone in lung tissue of cecal ligation and puncture-induced septic rats: a perspective from inflammatory cytokine release and oxidative stress. Naunyn-Schmiedeberg's Archives of Pharmacology, 386(7), 635-643.
  • 30. Potjo M., Theron AJ., Cockeran R., Sipholi NN., Steel HC., Bale TV., Meyer PWA., Anderson R., & Tintinger GR., 2019. Interleukin-10 and interleukin-1 receptor antagonist distinguish between patients with sepsis and the systemic inflammatory response syndrome (SIRS). Cytokine, 120, 227-233.
  • 31. Prescott HC., & Angus DC., 2018. Enhancing Recovery From Sepsis: A Review. JAMA, 319(1), 62-75.
  • 32. Rahman I., Biswas SK., Jimenez LA., Torres M., & Forman HJ., 2004. Glutathione, Stress Responses, and Redox Signaling in Lung Inflammation. Antioxidants & Redox Signaling, 7(1-2), 42-59.
  • 33. Remick DG., Newcomb DE., Bolgos GL., & Call D. R., 2000. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock, 13(2), 110-11.
  • 34. Rhodes A., Evans LE., Alhazzani W., Levy MM., Antonelli M., Ferrer R., Kumar A., 2017. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Critical Care Medicine, 45(3), 486-552.
  • 35. Rittirsch D., Huber-Lang MS., Flierl MA., & Ward PA., 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc, 4(1), 31-36.
  • 36. Ruiz S., Vardon-Bounes F., Merlet-Dupuy V., Conil JM., Buléon M., Fourcade O., Tack I., & Minville V., 2016. Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive care medicine experimental, 4(1), 22-22.
  • 37. Sadowitz B., Roy S., Gatto LA., Habashi N., & Nieman G., 2011. Lung injury induced by sepsis: lessons learned from large animal models and future directions for treatment. Expert Review of Anti-infective Therapy, 9(12), 1169-1178.
  • 38. Schabbauer G., (2012). Polymicrobial sepsis models: CLP versus CASP. Drug Discovery Today: Disease Models, 9(1), e17-e21.
  • 39. Seibt TM., Proneth B., & Conrad M., 2019. Role of GPX4 in ferroptosis and its pharmacological implication. Free radical biology & medicine, 133, 144-152.
  • 40. Seymour CW., Liu VX., Iwashyna TJ., Brunkhorst FM., Rea TD., Scherag A., 2016. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8), 762-774.
  • 41. Song J., Hu D., He C., Wang T., Liu X., Ma L., Lin Z., & Chen Z., 2013. Novel biomarkers for early prediction of sepsis-induced disseminated intravascular coagulation in a mouse cecal ligation and puncture model. J Inflamm (Lond), 10(1), 7.
  • 42. Song L., Zou Y., & Cao Z., 2018. Comparison of two different models of sepsis induced by cecal ligation and puncture in rats. Journal of Surgical Research, 229, 277-282.
  • 43. Srivastava A., Maggs JL., Antoine DJ., Williams DP., Smith DA., & Park BK., 2010. Role of Reactive Metabolites in Drug-Induced Hepatotoxicity. In J. Uetrecht (Ed.), Adverse Drug Reactions, 165-194. 44. Sun Y. Oberley LW., & Li Y., 1988. A simple method for clinical assay of superoxide dismutase. Clin Chem, 34(3), 497-500.
  • 45. Till GO., Hatherill JR., Tourtellotte WW., Lutz MJ., & Ward PA., 1985. Lipid peroxidation and acute lung injury after thermal trauma to skin. Evidence of a role for hydroxyl radical. American Journal of Pathology, 119(3), 376-384.
  • 46. Tripathi AS., Awasthi S., Maurya RK., Yasir M., Mohapatra L., & Srivastav V., 2022. Protective effect of vanillin on the management of cecal ligation and puncture induced sepsis rat model. Microbial Pathogenesis, 165, 105493-105493.
  • 47. Wang X., An X., Wang X., Hu X., Bi J., Tong L., Yang D., Song Y., & Bai C., 2019. Peroxiredoxin 6 knockout aggravates cecal ligation and puncture-induced acute lung injury. International immunopharmacology, 68, 252-258.
  • 48. Wang Y., Wang X., Zhang L., & Zhang R., 2018. Alleviation of Acute Lung Injury in Rats with Sepsis by Resveratrol via the Phosphatidylinositol 3-Kinase/Nuclear Factor-Erythroid 2 Related Factor 2/Heme Oxygenase-1 (PI3K/Nrf2/HO-1) Pathway. Medical Science Monitor, 24, 3604-3611.
  • 49. Wichterman KA., Baue AE., & Chaudry IH., 1980. Sepsis and septic shock--a review of laboratory models and a proposal. J Surg Res, 29(2), 189-201.https://doi.org/10.1016/00224804(80)90037-2.
  • 50. Xiao M., Zhu T., Zhang W., Wang T., Shen YC., Wan QF., & Wen FQ., 2014. Emodin Ameliorates LPS-Induced Acute Lung Injury, Involving the Inactivation of NF-κB in Mice. International Journal of Molecular Sciences, 15(11).
  • 51. Zhang J., Ma L., Hashimoto Y., Wan X., Shan J., Qu Y., & Hashimoto K., 2021. (R)-Ketamine ameliorates lethal inflammatory responses and multi-organ injury in mice induced by cecum ligation and puncture. Life Sciences, 284, 119882.
  • 52. Zhao W., Jia L., Yang HJ., Xue X., Xu WX., Cai JQ., Guo RJ., & Cao CC., 2018. Taurine enhances the protective effect of Dexmedetomidine on sepsis-induced acute lung injury via balancing the immunological system. Biomedicine & Pharmacotherapy, 103, 1362-1368.
  • 53. Zimmerman JJ., Akhtar SR., Caldwell E., & Rubenfeld GD., 2009. Incidence and Outcomes of Pediatric Acute Lung Injury. Pediatrics, 124(1), 87-95.
There are 52 citations in total.

Details

Primary Language English
Subjects Medical Physiology
Journal Section Research Articles
Authors

Mustafa Can Güler 0000-0001-8588-1035

Ayhan Tanyeli 0000-0002-0095-0917

Ersen Eraslan 0000-0003-2424-2269

Selim Çomaklı 0000-0002-8744-7686

Yasin Bayır 0000-0003-3562-6727

Project Number 8791
Publication Date September 28, 2022
Submission Date June 2, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

EndNote Güler MC, Tanyeli A, Eraslan E, Çomaklı S, Bayır Y (September 1, 2022) Cecal Ligation and Puncture-Induced Sepsis Model in Rats. Laboratuvar Hayvanları Bilimi ve Uygulamaları Dergisi 2 2 81–89.

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License

29929