Research Article
BibTex RIS Cite

Analysis of the spatial impact on Turkey’s life satisfaction

Year 2022, Volume: 9 Issue: 2, 65 - 80, 19.05.2022

Abstract

Spatial data analysis, whose results depend on the location of the event or the object being analyzed, consists of methods that require the use of both objects features and location. Especially developments in take place at GIS and programmes analyzing data enabled methods used in the analysis of spatial data more feasible. Spatial effect exits to forefront in spatial data analysis and it contains both spatial dependence and spatial heterogeneity. Spatial de-pendence or spatial autocorrelation reflects the situation in which the values observed in a place or region depend on the values of neighbor observations. Studies working spatial dependence should use methods taking this depen-dence into consideration. One of the most common method used in spatial analysis is spatial regression analysis.The aim of this study is to examine whether there is a spatial dependency structure in the happiness data at the provincial level in Turkey by using different spatial models including spatial effects in the light of the latest deve-lopments in the spatial analysis literature. Spatial dependence violates independence assumption valid for statisti-cal methods. The results of the regression analysis, in which spatial effects are included in the model or not, were compared by using the data from the Life Satisfaction Survey conducted at the provincial level by the Turkish Sta-tistical Institute (TUIK). As a result of the analyzes, it was determined that there is a spatial effect, and with the help of the estimated spatial regression analysis it has been concluded that the variables of suicide and environmental expenditures were directly; unemployment, income and suicide variables have indirect effects.

References

  • AKGİŞ, Ö. (2015). Bir Refah Göstergesi Olarak Türkiye’de Mutluluğun Mekânsal Dağılışı. Türk Coğrafya Dergisi. (65), 69-76.
  • ANSELIN, L. (1988). Spatial Econometrics: Methods And Models. Springer Science & Business Media.
  • BAILEY, T. C. & GATRELL, A. C. (1995). Interactive Spatial Data Analysis. Essex: Longman Scientific & Technical.
  • BRERETON, F., CLINCH, J. P. & FERREIRA, S. (2008). Happiness, Geography And The Environment. Ecological Economics. 65(2), 386-396.
  • COLLINS, K., BABYAK, C. & MOLONE, J. (2006). Treatment Of Spatial Autocorrelation in Geocoded Crime Data. Proceedings of the American Statistical Association Section on Survey Research Methods. 2864-2871.
  • DI TELLA, R., MACCULLOCH, R. J., & OSWALD, A. J. (2001). Preferences Over Inflation And Unemployment: Evidence From Surveys Of Happiness. American Economic Review. 91(1), 335-341.
  • ELHORST, J. P. (2014). Spatial Econometrics: From Cross-Sectional Data To Spatial Panels. Heidelberg: Springer.
  • ELHORST, J. P. (2010). Applied Spatial Econometrics: Raising The Bar. Spatial Economic Analysis, 5(1), 9-28.
  • FLORAX, R. J. & GRAAFF, T. D. (2004). The Performance Of Diagnostic Tests For Spatial Dependence in Linear Regression Models: A Meta-Analysis Of Simulation Studies. içinde Advances in Spatial Econometrics. Eds: Luc Anselin, Raymond Florax ve Sergio Rey. ss.29-65. Springer, Berlin, Heidelberg.
  • FREY, B. S. & STUTZER, A. (2002). What Can Economists Learn From Happiness Research?. Journal of Economic Literature. 40(2), 402-435.
  • GOODCHILD, M. F. (1987). Towards An Enumeration And Classification Of GIS Functions. Proc. Int. GIS Symposium, 67-77.
  • GUO, T. & LINGYI H. (2011). Economic Determinants of Happiness: Evidence from the US General Social Survey. Cornell University, http://arxiv.org/ftp/arxiv/papers/1112/1112.5802.pdf
  • LESAGE, J. & KELLEY P. (2009). An Introduction to Spatial Econometrics. Boca Raton: Chapman and Hall/CRC.
  • LIN, C. H. A., LAHIRI, S. & HSU, C. P. (2014). Happiness and Regional Segmentation: Does Space Matter?. Journal of Happiness Studies. 15(1), 57-83.
  • REHDANZ, K. & MADDİSON, D. (2005). Climate and Happiness. Ecological Economics. 52(1), 111-125.
  • STANCA, L. (2010). The Geography Of Economics And Happiness: Spatial Patterns in The Effects Of Economic Conditions On Well-Being. Social Indicators Research. 99(1), 115-133.
  • STETZER, F. (1982). Specifying Weights in Spatial Forecasting Models: The Results Of Some Experiments. Environment and Planning A. 14(5), 571-584.
  • TELLA, R. D., MACCULLOCH, R. J. & OSWALD, A. J. (2003). The Macroeconomics Of Happiness. Review of Economics and Statistics, 85(4), 809-827.
  • TOBLER, W. R. (1970). A Computer Movie Simulating Urban Growth in The Detroit Region, Economic Geography. Vol.46, ss.234–40.
  • TÜİK, Yaşam Mennuniyeti Araştırması, 2014, http://www.tuik.gov.tr/Kitap.do?metod=KitapDetay&KT_ID=11&KITAP_ID=15
  • VEGA, S. H. & ELHORST, J. P. (2013). On Spatial Econometric Models, Spillover Effects, and W. 53rd ERSA Congress, Palermo, Italy, 1-28.

Türkiye’nin yaşam memnuniyetine mekansal etkinin analizi

Year 2022, Volume: 9 Issue: 2, 65 - 80, 19.05.2022

Abstract

Mekansal veri analizi, analiz sonuçları nesnelerin ya da analiz edilen olayların konumlarına bağlı olan, hem konum bilgisi hem de nesnelerin özelliklerinin kullanımı gerektiren yöntemlerden oluşmaktadır. Coğrafi Bilgi Sistemlerinde meydana gelen ilerlemeler ve verinin analiz edilmesine yönelik programların geliştirilmesi mekansal veri analizde kullanılan yöntemleri daha uygulanabilir hale getirmiştir. Mekansal veri analizinde mekansal etkileşim ön plana çıkmakta ve mekansal etkileşim hem mekansal bağımlılığı hem de mekansal heterojenliği kapsamaktadır. Mekansal bağımlılık veya mekansal otokorelasyon bir mekanda ya da bölgede gözlenen değerlerin komşu gözlem değerlerine bağlı olduğu durumu yansıtmaktadır. Mekansal verideki bağımlılık yapısı regresyon analizini de içeren çeşitli istatistiksel yöntemlerde geçerli olan bağımsızlık varsayımının ihlal edilmesine neden olmaktadır. Konumun ve konumlar arasındaki etkileşimin önemli olduğu çalışmalarda bu bağımlılık yapısını dikkate alarak geliştirilmiş yöntemlerin kullanılması gerekmektedir. Mekansal analizde kullanılan en yaygın yöntemlerden biri mekansal regresyon analizidir.

Bu çalışmanın amacı mekansal analiz literatüründeki son gelişmeler ışığında mekansal etkilerin de dahil edildiği farklı mekansal modeller kullanılarak Türkiye’de il düzeyindeki mutluluk verilerinde mekansal bağımlılık yapısının olup olmadığı incelemektir. Belirlenen amaç doğrultusunda Türkiye İstatistik Kurumu (TÜİK) tarafından il düzeyinde yapılan Yaşam Memnuniyeti Araştırması verileri kullanılarak mekansal etkilerin modele dahil edildiği ve edilmediği regresyon analizi sonuçları karşılaştırılmıştır. Yapılan analizler sonucunda mekansal etkinin var olduğu, tahmin edilen mekansal regresyon analizi yardımıyla intihar ve çevre harcamaları değişkenlerinin dolaysız; işsizlik, gelir ve intihar değişkenlerinin ise dolaylı etkiye sahip olduğu sonucuna ulaşılmıştır.

References

  • AKGİŞ, Ö. (2015). Bir Refah Göstergesi Olarak Türkiye’de Mutluluğun Mekânsal Dağılışı. Türk Coğrafya Dergisi. (65), 69-76.
  • ANSELIN, L. (1988). Spatial Econometrics: Methods And Models. Springer Science & Business Media.
  • BAILEY, T. C. & GATRELL, A. C. (1995). Interactive Spatial Data Analysis. Essex: Longman Scientific & Technical.
  • BRERETON, F., CLINCH, J. P. & FERREIRA, S. (2008). Happiness, Geography And The Environment. Ecological Economics. 65(2), 386-396.
  • COLLINS, K., BABYAK, C. & MOLONE, J. (2006). Treatment Of Spatial Autocorrelation in Geocoded Crime Data. Proceedings of the American Statistical Association Section on Survey Research Methods. 2864-2871.
  • DI TELLA, R., MACCULLOCH, R. J., & OSWALD, A. J. (2001). Preferences Over Inflation And Unemployment: Evidence From Surveys Of Happiness. American Economic Review. 91(1), 335-341.
  • ELHORST, J. P. (2014). Spatial Econometrics: From Cross-Sectional Data To Spatial Panels. Heidelberg: Springer.
  • ELHORST, J. P. (2010). Applied Spatial Econometrics: Raising The Bar. Spatial Economic Analysis, 5(1), 9-28.
  • FLORAX, R. J. & GRAAFF, T. D. (2004). The Performance Of Diagnostic Tests For Spatial Dependence in Linear Regression Models: A Meta-Analysis Of Simulation Studies. içinde Advances in Spatial Econometrics. Eds: Luc Anselin, Raymond Florax ve Sergio Rey. ss.29-65. Springer, Berlin, Heidelberg.
  • FREY, B. S. & STUTZER, A. (2002). What Can Economists Learn From Happiness Research?. Journal of Economic Literature. 40(2), 402-435.
  • GOODCHILD, M. F. (1987). Towards An Enumeration And Classification Of GIS Functions. Proc. Int. GIS Symposium, 67-77.
  • GUO, T. & LINGYI H. (2011). Economic Determinants of Happiness: Evidence from the US General Social Survey. Cornell University, http://arxiv.org/ftp/arxiv/papers/1112/1112.5802.pdf
  • LESAGE, J. & KELLEY P. (2009). An Introduction to Spatial Econometrics. Boca Raton: Chapman and Hall/CRC.
  • LIN, C. H. A., LAHIRI, S. & HSU, C. P. (2014). Happiness and Regional Segmentation: Does Space Matter?. Journal of Happiness Studies. 15(1), 57-83.
  • REHDANZ, K. & MADDİSON, D. (2005). Climate and Happiness. Ecological Economics. 52(1), 111-125.
  • STANCA, L. (2010). The Geography Of Economics And Happiness: Spatial Patterns in The Effects Of Economic Conditions On Well-Being. Social Indicators Research. 99(1), 115-133.
  • STETZER, F. (1982). Specifying Weights in Spatial Forecasting Models: The Results Of Some Experiments. Environment and Planning A. 14(5), 571-584.
  • TELLA, R. D., MACCULLOCH, R. J. & OSWALD, A. J. (2003). The Macroeconomics Of Happiness. Review of Economics and Statistics, 85(4), 809-827.
  • TOBLER, W. R. (1970). A Computer Movie Simulating Urban Growth in The Detroit Region, Economic Geography. Vol.46, ss.234–40.
  • TÜİK, Yaşam Mennuniyeti Araştırması, 2014, http://www.tuik.gov.tr/Kitap.do?metod=KitapDetay&KT_ID=11&KITAP_ID=15
  • VEGA, S. H. & ELHORST, J. P. (2013). On Spatial Econometric Models, Spillover Effects, and W. 53rd ERSA Congress, Palermo, Italy, 1-28.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Articles
Authors

Özlem Ergüt This is me 0000-0002-4076-8343

A. Mete Çilingirtürk 0000-0001-8677-7969

Publication Date May 19, 2022
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

APA Ergüt, Ö., & Çilingirtürk, A. M. (2022). Türkiye’nin yaşam memnuniyetine mekansal etkinin analizi. Journal of Life Economics, 9(2), 65-80.