Research Article
BibTex RIS Cite

Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla

Year 2022, , 81 - 97, 17.03.2023
https://doi.org/10.24232/jmd.1221946

Abstract

The changes in physical, chemical, and mineralogical properties of topsoil after forest fires and their relevancy with erosion risk have been so far studied for different geographical regions and ecosystems. It is well known that the risk of erosion increases due to the loss of shear strength and the changes in hydraulic properties after the fire. The consistency limits are strongly related to the shear strength of the soil. Nevertheless, a few studies evaluated the consistency limits of naturally burned soils. In addition, determination of the consistency limits of sandy soils can be very challenging owing to their low plasticity. The temperatures produced by the forest fire that occurred on the left flank of an irrigation dam in Muğla, Kozağaç village affected the topsoil. Hence, grain size distribution, soil organic content (SOM), and Atterberg limits of 24 soil specimens collected from the burned and unburned locations were studied. It was found that the grain size distribution of the burned soil did not significantly change whereas clay content and Atterberg limits increased, and SOM decreased. The methodology followed in this study and the results can be served as a base for future studies of fire effects on sandy soils.

References

  • AASHTO T89 (2022). Standard method of test for determining the liquid limit of soils method B. American Association of State Highway and Transportation Officials, US.
  • Agbeshi, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 1419-1441.
  • ASTM D2487–17e1 (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA.
  • ASTM D4318-17e1 (2018). Standard test methods for liquid limit, plastic limit and plasticity index of soils. ASTM International, West Conshohocken, PA.
  • ASTM D6913/D6913M-17 (2021). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA.
  • Badía, D., Martí, C. (2008). Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Research and Management, 22, 93-108. https://doi. org/10.1080/15324980801957721
  • Campbell, G.S., Jungbauer, J.D., Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159(6), 363-374. https://doi. org/10.1097/00010694-199506000-00001
  • Cerdà, A., Doerr & S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256–263. https://doi.org/10.1016/j.catena.2008.03.010
  • Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8
  • Chase, A. (2022). Using soil testing data to examine organic carbon changes during the past 27 years in Maine agricultural soils [PhD thesis]. University of Maine, USA.
  • Countryman, C. M. (1964). Mass fires and fire behavior. USDA Forest Service, Research Paper PSW-19. https://www.fs.usda.gov/psw/ publications/documents/psw_rp019/psw_rp019. pdf .
  • Das, B.M., Sobhan, K. (2017). Principles of Geotechnical Engineering. Cengage Learning, USA, 766 p.
  • DeBano, L.F., Rice, R.M., Conrad, C.E. (1979). Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. USDA Forest Service Research Paper PSW-145. https://www.fs.usda.gov/psw/publications/ documents/psw_rp145/psw_rp145.pdf.
  • Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 8(2), 499-513. https://doi.org/10.5194/se- 8-499-2017.
  • Dipova, N. (2011). Determination of liquid limit of soils using one point fall cone method. Journal of Geological Engineering, 35(1), 27-42.
  • Dlapa, P., Bodi, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. (2015). Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. https://doi.org/10.1016/j. catena.2014.06.018.
  • Dunn, P. H., DeBano, L.F., (1977). Fire’s effect on biological and chemical properties of chaparral soils. Proceedings of Symposium on Environmental Conservation: Fire and Fuel Management in Mediterranean Ecosystems, H.A. Mooney & C.E. Conrad (eds.), USDA Forest Service WO-3, Palo Alto, CA.Washington D.C., USA, pp. 75-84.
  • FAO (2015). World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. http:// www.fao.org/3/a-i3794e.pdf.
  • Fernández, I., Cabaneiro, A., Carballas, T. (1997). Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29, 1-11. https://doi.org/10.1016/ S0038-0717(96)00289-1
  • Fox, D.M., Darboux, F., Carrega, P. (2007). Effects of fire-induced water repellency on aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes, 21, 2377-2384. https:// doi.org/10.1002/hyp.6758
  • General Directorate of Forestry (2022). GIS based e-map application. https://cbs.ogm.gov.tr/ vatandas/
  • Göktaş, F. (1998). Stratigraphy and sedimentology of Neogene sedimentation around Mugla (SW Anatolia). Mineral and Research Institute of Turkey Report No: 10225, Ankara, Turkey, 181 p.
  • Grim, R.E. (1968). Clay mineralogy, 2nd edition. McGraw-Hill, 596 p.
  • Gül, M. (2015). Lithological properties and environmental importance of the Quaternary colluviums (Muğla, SW Turkey). Environmental Earth Sciences, 74, 4089-4108. https://doi. org/10.1007/s12665-015-4506-4
  • Gündüz, Z., Dağdeviren, U. (2009). The effects of sand particles on the determination of consistency limits. İMO Technical Journal, 4701-4715.
  • Gürer, Ö.F., Sanğu, E., Özburan, M., Gürbüz, A., Sarıca-Filoreau N. (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. International Journal of Earth Sciences, 102, 2199-2221. https://doi.org/10.1007/s00531- 013-0909-1
  • Haake, S. (2020). Burn severity and its impact on soil properties: a study of the 2016 Erskine fire in the southern Sierra Nevada [MSc. Thesis]. California State University, Bakersfield.
  • Haigh, S.K. (2012). Mechanics of the Casagrande liquid limit test. Canadian Geotechnical Journal, 49(9), 1015-1023. Corrigenda, 49(9), 1116 and 49(11), 1329. https://doi.org/10.1139/t2012-066
  • Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, C.J., Tittonell, P.A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320- 328. https://doi.org/10.1111/ejss.12224
  • Inbar, M., Wittenberg, L., Tamir, M. (1997). Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire, 7, 285-294.
  • Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 721-726. https://doi.org/10.1016/j.catena.2010.10.007
  • Kavdir, Y., Ekinci, H., Yüksel, O., Mermut, A.R. (2005). Soil aggregate stability and 13C CP/ MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma, 129, 219-229. https://doi. org/10.1016/j.geoderma.2005.01.013
  • Khoirullah, N., Mufti, I.J., Sophian, I., Yan, T., Iskandarsyah, W.M., Muslim, D. (2019). Erosion potential based on erodibility and plasticity index data on Cilengkrang, Bandung, west Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 396, 012035. https://doi. org/10.1088/1755-1315/396/1/012035
  • Konare, H., Yost, R.S., Doumbia, M., McCarty, G.W., Jarju, A., Kablan, R. (2010). Loss on ignition: Measuring soil organic carbon in soils of the Sahel, West Africa. African Journal of Agricultural Research, 5(22), 3088-3095.
  • Lalitha, M., Anil Kumar, K.S., Nair, K.M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., Hegde, R. (2021). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards, 106, 487-507. https://doi.org/10.1007/s11069-020-04472-0
  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Martínez-Zavala, L. (2011). Fire effects on soil aggregation: a review. Earth Science Reviews, 109(1–2), 44-60. https://doi.org/10.1016/j. earscirev.2011.08.002
  • Mitchell, J.K., Soga, K., (2005). Fundamentals of Soil Behavior, 3rd edition. John Wiley & Sons Inc., New York, 592 p.
  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2018). What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 57-63. https://doi.org/10.1016/j. clay.2018.04.011
  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2022). Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science, 229, 106689. https://doi.org/10.1016/j. clay.2022.106689
  • Ngezahayo, E., Burrow, M.P.N., Ghataora, G.S. (2019). The advances in understanding erodibility of soils in unpaved roads. Avestia Publishing International Journal of Civil Infrastructure, 2, 18-29. https://doi.org/10.11159/ijci.2019.002
  • Orhan, M., Özer, M., Işık, N.S. (2005). Comparison of Casagrande and cone penetration tests for the determination of the liquid limit of natural soils. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(4), 711-720.
  • Peltier, L.C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214-236. https://doi. org/10.2307/2561059 Robichaud, P.R., Hungerford, R.D., (2000). Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231-232, 207-219. https://doi. org/10.1016/S0022-1694(00)00195-5
  • Salehi, M.H., Hashemi Beni, O., Beigi Harchegani, H., Esfandiarpour Borujeni, I., Motaghian, H.R. (2011). Refining soil organic matter determination by loss-on-ignition. Pedosphere, 21(4), 473-482. https://doi.org/10.1016/S1002- 0160(11)60149-5
  • Schulte, E.E., Hopkins, B.G. (1996). Estimation of soil organic matter by weight loss-on-ignition. SSSA Special Publication; Soil Organic Matter: Analysis and Interpretation, F.R. Magdoff, M.A. Tabatabai, E.A. Hanlon (eds.) Soil Science Society of America, USA, 21-31.
  • Soto, B., Benito, E., Diaz-Fierros, F. (1991). Heat- induced degradation processes in forest soils. International Journal of Wildland Fire, 1, 147- 152. https://doi.org/10.1071/WF9910147
  • Stanchi, S., Freppaz, M., Godone, D., Zanini, E. (2013). Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use and Management, 29, 586- 596. https://doi.org/10.1111/sum.12063
  • Terzaghi, K., Peck, R. B., Mesri, G. (1996). Soil mechanics in engineering practice, 3rd edition. Wiley, New York, NY, USA, 592 p.
  • Thomaz, E.L. (2021). Effects of fire on the aggregate stability of clayey soils: A meta-analysis. Earth- Science Reviews, 221, 103802. https://doi. org/10.1016/j.earscirev.2021.103802
  • Turkish State Meteorological Service (TSMS) (2022). Statistical precipitation and temperature records. https://www.mgm.gov.tr/veridegerlendirme/il- ve-ilceler-istatistik.aspx?m=MUGLA.
  • USDA (2017). Soil survey manual. Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18. U.S. Department of Agriculture, 639 p.
  • Vacchiano, G., Stanchi, S., Marinari, G., Ascoli, D., Zanini, E., Motta, R. (2014). Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 472, 778-788. https://doi. org/10.1016/j.scitotenv.2013.11.101
  • Varela, M.E., Benito, E., Keizer, J.J. (2010a). Effects of wildfire and laboratory heating on soil aggregate stability of pine forest in Galicia: the role of lithology, soil organic matter content and water repellency. Catena, 83, 127-134. https:// doi.org/10.1016/j.catena.2010.08.001
  • Varela, M.E., Benito, E., Keizer, J. (2010b). Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degradation & Development, 21, 75-82. https://doi.org/10.1002/ldr.896
  • Wagner, J.F. (2013). Mechanical properties of clays and clay minerals. Developments in Clay Science, 5, 347-381. https://doi.org/10.1016/ B978-0-08-098258-8.00011-0
  • Wang, Q., Zhou, P., Fan, J., Qiu, S. (2021). Study on parameters of two widely used cohesive soils erosion models. Water, 13, 3621. https://doi. org/10.3390/w13243621
  • Zavala, L.M., Granged, A.J.P., Jordan, A., Barcenas- Moreno, G. (2010). Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158 (3–4), 366-374. https://doi. org/10.1016/j.geoderma.2010.06.004

Orman yangının kumlu zeminlerin kıvam limitleri üzerindeki etkisinin çalışılması: Bir vaka incelemesi, Kozağaç, Muğla

Year 2022, , 81 - 97, 17.03.2023
https://doi.org/10.24232/jmd.1221946

Abstract

Orman yangınlarının ardından toprağın üst katmanında meydana gelen fiziksel, kimyasal ve mineralojik değişimler ve bunların erozyonla ilişkisi bugüne kadar farklı coğrafik bölge ve ekosistemler için çalışılmıştır. Yangın sonrası erozyon riskinin, yangın sonrasında makaslama direnci kaybı ve zeminin hidrolik özelliklerinin değişmesi nedeniyle arttığı bilinmektedir. Kıvam limiti değerleri toprağın makaslama dayanımıyla doğrudan ilişkilidir. Buna karşın, az sayıda çalışma doğal yollarla yanmış toprakların kıvam limitlerini irdelemiştir. Buna ek olarak, kumlu zeminlerin kıvam limitlerinin belirlenmesi düşük plastisiteye sahip olmaları nedeniyle oldukça zor olabilir. Muğla’nın Kozağaç mahallesinde bulunan sulama barajının sol sahilindeki yamaçlarda meydana gelen yangında oluşan sıcaklıklar üst toprağı etkilemiştir. Bu nedenle, yanmış ve yanmamış alanlardan toplanan 24 adet numunenin tane boyu dağılımı, organik madde içeriği (SOM) ve kıvam limitleri çalışılmıştır. Yanmış toprağın tane boyu dağılımında anlamlı bir değişiklik olmadığı ancak kil içeriği ve Atterberg limitlerinin arttığı, SOM’nin azaldığı bulunmuştur. Bu çalışmada kullanılan yöntemler ve sonuçlar ileride yangının kumlu topraklar üzerindeki etkisinin araştırılacağı çalışmalar için bir temel olarak kabul edilebilir.

References

  • AASHTO T89 (2022). Standard method of test for determining the liquid limit of soils method B. American Association of State Highway and Transportation Officials, US.
  • Agbeshi, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 1419-1441.
  • ASTM D2487–17e1 (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA.
  • ASTM D4318-17e1 (2018). Standard test methods for liquid limit, plastic limit and plasticity index of soils. ASTM International, West Conshohocken, PA.
  • ASTM D6913/D6913M-17 (2021). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA.
  • Badía, D., Martí, C. (2008). Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Research and Management, 22, 93-108. https://doi. org/10.1080/15324980801957721
  • Campbell, G.S., Jungbauer, J.D., Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159(6), 363-374. https://doi. org/10.1097/00010694-199506000-00001
  • Cerdà, A., Doerr & S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256–263. https://doi.org/10.1016/j.catena.2008.03.010
  • Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8
  • Chase, A. (2022). Using soil testing data to examine organic carbon changes during the past 27 years in Maine agricultural soils [PhD thesis]. University of Maine, USA.
  • Countryman, C. M. (1964). Mass fires and fire behavior. USDA Forest Service, Research Paper PSW-19. https://www.fs.usda.gov/psw/ publications/documents/psw_rp019/psw_rp019. pdf .
  • Das, B.M., Sobhan, K. (2017). Principles of Geotechnical Engineering. Cengage Learning, USA, 766 p.
  • DeBano, L.F., Rice, R.M., Conrad, C.E. (1979). Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. USDA Forest Service Research Paper PSW-145. https://www.fs.usda.gov/psw/publications/ documents/psw_rp145/psw_rp145.pdf.
  • Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 8(2), 499-513. https://doi.org/10.5194/se- 8-499-2017.
  • Dipova, N. (2011). Determination of liquid limit of soils using one point fall cone method. Journal of Geological Engineering, 35(1), 27-42.
  • Dlapa, P., Bodi, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. (2015). Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. https://doi.org/10.1016/j. catena.2014.06.018.
  • Dunn, P. H., DeBano, L.F., (1977). Fire’s effect on biological and chemical properties of chaparral soils. Proceedings of Symposium on Environmental Conservation: Fire and Fuel Management in Mediterranean Ecosystems, H.A. Mooney & C.E. Conrad (eds.), USDA Forest Service WO-3, Palo Alto, CA.Washington D.C., USA, pp. 75-84.
  • FAO (2015). World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. http:// www.fao.org/3/a-i3794e.pdf.
  • Fernández, I., Cabaneiro, A., Carballas, T. (1997). Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29, 1-11. https://doi.org/10.1016/ S0038-0717(96)00289-1
  • Fox, D.M., Darboux, F., Carrega, P. (2007). Effects of fire-induced water repellency on aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes, 21, 2377-2384. https:// doi.org/10.1002/hyp.6758
  • General Directorate of Forestry (2022). GIS based e-map application. https://cbs.ogm.gov.tr/ vatandas/
  • Göktaş, F. (1998). Stratigraphy and sedimentology of Neogene sedimentation around Mugla (SW Anatolia). Mineral and Research Institute of Turkey Report No: 10225, Ankara, Turkey, 181 p.
  • Grim, R.E. (1968). Clay mineralogy, 2nd edition. McGraw-Hill, 596 p.
  • Gül, M. (2015). Lithological properties and environmental importance of the Quaternary colluviums (Muğla, SW Turkey). Environmental Earth Sciences, 74, 4089-4108. https://doi. org/10.1007/s12665-015-4506-4
  • Gündüz, Z., Dağdeviren, U. (2009). The effects of sand particles on the determination of consistency limits. İMO Technical Journal, 4701-4715.
  • Gürer, Ö.F., Sanğu, E., Özburan, M., Gürbüz, A., Sarıca-Filoreau N. (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. International Journal of Earth Sciences, 102, 2199-2221. https://doi.org/10.1007/s00531- 013-0909-1
  • Haake, S. (2020). Burn severity and its impact on soil properties: a study of the 2016 Erskine fire in the southern Sierra Nevada [MSc. Thesis]. California State University, Bakersfield.
  • Haigh, S.K. (2012). Mechanics of the Casagrande liquid limit test. Canadian Geotechnical Journal, 49(9), 1015-1023. Corrigenda, 49(9), 1116 and 49(11), 1329. https://doi.org/10.1139/t2012-066
  • Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, C.J., Tittonell, P.A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320- 328. https://doi.org/10.1111/ejss.12224
  • Inbar, M., Wittenberg, L., Tamir, M. (1997). Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire, 7, 285-294.
  • Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 721-726. https://doi.org/10.1016/j.catena.2010.10.007
  • Kavdir, Y., Ekinci, H., Yüksel, O., Mermut, A.R. (2005). Soil aggregate stability and 13C CP/ MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma, 129, 219-229. https://doi. org/10.1016/j.geoderma.2005.01.013
  • Khoirullah, N., Mufti, I.J., Sophian, I., Yan, T., Iskandarsyah, W.M., Muslim, D. (2019). Erosion potential based on erodibility and plasticity index data on Cilengkrang, Bandung, west Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 396, 012035. https://doi. org/10.1088/1755-1315/396/1/012035
  • Konare, H., Yost, R.S., Doumbia, M., McCarty, G.W., Jarju, A., Kablan, R. (2010). Loss on ignition: Measuring soil organic carbon in soils of the Sahel, West Africa. African Journal of Agricultural Research, 5(22), 3088-3095.
  • Lalitha, M., Anil Kumar, K.S., Nair, K.M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., Hegde, R. (2021). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards, 106, 487-507. https://doi.org/10.1007/s11069-020-04472-0
  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Martínez-Zavala, L. (2011). Fire effects on soil aggregation: a review. Earth Science Reviews, 109(1–2), 44-60. https://doi.org/10.1016/j. earscirev.2011.08.002
  • Mitchell, J.K., Soga, K., (2005). Fundamentals of Soil Behavior, 3rd edition. John Wiley & Sons Inc., New York, 592 p.
  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2018). What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 57-63. https://doi.org/10.1016/j. clay.2018.04.011
  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2022). Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science, 229, 106689. https://doi.org/10.1016/j. clay.2022.106689
  • Ngezahayo, E., Burrow, M.P.N., Ghataora, G.S. (2019). The advances in understanding erodibility of soils in unpaved roads. Avestia Publishing International Journal of Civil Infrastructure, 2, 18-29. https://doi.org/10.11159/ijci.2019.002
  • Orhan, M., Özer, M., Işık, N.S. (2005). Comparison of Casagrande and cone penetration tests for the determination of the liquid limit of natural soils. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(4), 711-720.
  • Peltier, L.C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214-236. https://doi. org/10.2307/2561059 Robichaud, P.R., Hungerford, R.D., (2000). Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231-232, 207-219. https://doi. org/10.1016/S0022-1694(00)00195-5
  • Salehi, M.H., Hashemi Beni, O., Beigi Harchegani, H., Esfandiarpour Borujeni, I., Motaghian, H.R. (2011). Refining soil organic matter determination by loss-on-ignition. Pedosphere, 21(4), 473-482. https://doi.org/10.1016/S1002- 0160(11)60149-5
  • Schulte, E.E., Hopkins, B.G. (1996). Estimation of soil organic matter by weight loss-on-ignition. SSSA Special Publication; Soil Organic Matter: Analysis and Interpretation, F.R. Magdoff, M.A. Tabatabai, E.A. Hanlon (eds.) Soil Science Society of America, USA, 21-31.
  • Soto, B., Benito, E., Diaz-Fierros, F. (1991). Heat- induced degradation processes in forest soils. International Journal of Wildland Fire, 1, 147- 152. https://doi.org/10.1071/WF9910147
  • Stanchi, S., Freppaz, M., Godone, D., Zanini, E. (2013). Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use and Management, 29, 586- 596. https://doi.org/10.1111/sum.12063
  • Terzaghi, K., Peck, R. B., Mesri, G. (1996). Soil mechanics in engineering practice, 3rd edition. Wiley, New York, NY, USA, 592 p.
  • Thomaz, E.L. (2021). Effects of fire on the aggregate stability of clayey soils: A meta-analysis. Earth- Science Reviews, 221, 103802. https://doi. org/10.1016/j.earscirev.2021.103802
  • Turkish State Meteorological Service (TSMS) (2022). Statistical precipitation and temperature records. https://www.mgm.gov.tr/veridegerlendirme/il- ve-ilceler-istatistik.aspx?m=MUGLA.
  • USDA (2017). Soil survey manual. Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18. U.S. Department of Agriculture, 639 p.
  • Vacchiano, G., Stanchi, S., Marinari, G., Ascoli, D., Zanini, E., Motta, R. (2014). Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 472, 778-788. https://doi. org/10.1016/j.scitotenv.2013.11.101
  • Varela, M.E., Benito, E., Keizer, J.J. (2010a). Effects of wildfire and laboratory heating on soil aggregate stability of pine forest in Galicia: the role of lithology, soil organic matter content and water repellency. Catena, 83, 127-134. https:// doi.org/10.1016/j.catena.2010.08.001
  • Varela, M.E., Benito, E., Keizer, J. (2010b). Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degradation & Development, 21, 75-82. https://doi.org/10.1002/ldr.896
  • Wagner, J.F. (2013). Mechanical properties of clays and clay minerals. Developments in Clay Science, 5, 347-381. https://doi.org/10.1016/ B978-0-08-098258-8.00011-0
  • Wang, Q., Zhou, P., Fan, J., Qiu, S. (2021). Study on parameters of two widely used cohesive soils erosion models. Water, 13, 3621. https://doi. org/10.3390/w13243621
  • Zavala, L.M., Granged, A.J.P., Jordan, A., Barcenas- Moreno, G. (2010). Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158 (3–4), 366-374. https://doi. org/10.1016/j.geoderma.2010.06.004
There are 56 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Makaleler - Articles
Authors

Tümay Kadakci Koca 0000-0002-6705-9117

Publication Date March 17, 2023
Submission Date December 20, 2022
Published in Issue Year 2022

Cite

APA Kadakci Koca, T. (2023). Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla. Jeoloji Mühendisliği Dergisi, 46(2), 81-97. https://doi.org/10.24232/jmd.1221946