Research Article
BibTex RIS Cite

Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi

Year 2012, Volume: 36 Issue: 2, 115 - 124, 15.12.2012

Abstract



Zemin sıvılaşması arazi ve laboratuvar
deneyleri ile ayrıntılı olarak incelenmektedir. İzotrop ve anizotrop gerilme
koşullarında eksenel deformasyon ve boşluk suyu basıncı gelişimine bağlı olarak
farklı sıvılaşma tanımları geliştirilmiştir. Bu çalışmada, konsolidasyonlu-drenajlı
anizotropik devirsel üç eksenli deneyler üç farklı tane boyu dağılımına sahip,
iki farklı bağıl yoğunlukta hazırlanan suya doygun örselenmiş kumda yapılarak,
sıvılaşma davranışları incelenmiştir. Deneylerde uygulanacak gerilmeler farklı
derinliklerde, yüzeyde tekil bir temel bulunacak şekilde hesaplanmıştır.
Deneylerde yükleme frekansı 1 saniye (s), devir sayısı ise sabit bir deprem
büyüklüğüne göre 26 olarak seçilmiştir. Üç farklı kum için eksenel düşey
deformasyonun değişimi takip edilerek sıvılaşma ile ilişkilendirilmiştir. Kum
örneklerinde gevşek veya sıkı durumda farklı eksenel deformasyonlar
gelişmiştir. Ione kumu ve sahil kumunda sıkışma evresinde gelişen kabarmalar,
sıvılaşma başlangıcına ulaşılmasını engellemiştir. En iri taneli ve uniform
olmayan beton kumunda eksenel deformasyona göre % 90 izafi sıkılıkta sıvılaşma
potansiyeli belirlenmiştir. 

References

  • Bouferra, R., Benseddiq, N., Shahrour, I., 2007. Saturation and preloading effects on the cyclic behavior of sand. International Journal of Geomechanics, 7 (5), 194-202.
  • Castro, G., 1975. Liquefaction and cyclic mobility of saturated sands. Journal of Geotechnical Engineering Division, ASCE, 101 (GT6), 551-569.
  • Castro, G., Poulos, S.J., 1977. Factors affecting liquefaction and cyclic mobility. Journal of
  • Geotechnical Engineering Division, ASCE, 103, 501-516.
  • Ghionna, V.N., Porcino, D., 2006. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 132 (2), 194-202.
  • Konrad, J.M., Wagg, B.T., 1993. Undrained cyclic loading of anisotropically consolidated clayey silts. Journal of Geotechnical Engineering, 119 (5), 929-947.
  • Lee, K.L., Seed, H.B., 1967. Cyclic stress conditions causing liquefaction of sand. Journal of Soil Mechanics and Foundations Division, ASCE, 93, 47-70.
  • Mohamad, R., Dobry,R., 1986. Undrained monotonic and cyclic triaxial strength of sand. Journal of Geotechnical Engineering, 112 (10), 941-958.
  • Norris, G.M., Siddharthan, R., Zafir, Z., Madhu, R., 1995. Liquefaction and residual strength of sands from drained triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123 (3), 220-228.
  • Palmer, J., 1997. Undrained lateral compression response from drained lateralcompression test. University of Nevada, Reno, USA, Ph.D.Thesis, 440 p.
  • Seed, H.B., Mori, K., Chan, C.K., 1975. Influence of seismic history on the liquefaction characteristics of sands. UCB/EERC-75/25 Report, University of California, Berkeley, CA.,33p.
  • Seed, H. B., Idriss, I. M., 1982. Ground Motions and Soil Liquefaction During Earthquakes.
  • Earthquake Engineering Research Institute Monograph, EERI, Oakland, CA., 134 p.
  • Seed, H.B., Idriss, I.M., Arango, I., 1983. Evaluation of liquefaction potential using field
  • performance data. Journal of Geotechnical Engineering Division, ASCE, 109 (3), 458-482.
  • Tsuchida, H., 1970. Prediction and countermeasure against the liquefaction in sand deposits. Seminar in the Port and Harbor Research Institute, Abstracts, 3.1 - 3.33, Japan (In Japanese).
  • Ulamis, K., Yang, H. J., 2010. The prediction of the excess pore water pressure generation and the vertical strain in different cyclic stress ratio loadings under anisotropic undrained conditions. GSA Annual Meeting - Denver Colorado, USA ( In DVD).
  • Ulamis, K., Yang, H. J., 2011. Soil permeability related to liquefaction potential under anisotropic cyclic triaxial test, 43rd Engineering Geology and Geotechnical Engineering Symposium, 1 (1), 481-489.
  • Yang, H.J., 2005. Extension/compression test stress-strain-volume change characterization under drained conditions. University of Nevada, Reno, Ph.D. Thesis, 431 p.
Year 2012, Volume: 36 Issue: 2, 115 - 124, 15.12.2012

Abstract

References

  • Bouferra, R., Benseddiq, N., Shahrour, I., 2007. Saturation and preloading effects on the cyclic behavior of sand. International Journal of Geomechanics, 7 (5), 194-202.
  • Castro, G., 1975. Liquefaction and cyclic mobility of saturated sands. Journal of Geotechnical Engineering Division, ASCE, 101 (GT6), 551-569.
  • Castro, G., Poulos, S.J., 1977. Factors affecting liquefaction and cyclic mobility. Journal of
  • Geotechnical Engineering Division, ASCE, 103, 501-516.
  • Ghionna, V.N., Porcino, D., 2006. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 132 (2), 194-202.
  • Konrad, J.M., Wagg, B.T., 1993. Undrained cyclic loading of anisotropically consolidated clayey silts. Journal of Geotechnical Engineering, 119 (5), 929-947.
  • Lee, K.L., Seed, H.B., 1967. Cyclic stress conditions causing liquefaction of sand. Journal of Soil Mechanics and Foundations Division, ASCE, 93, 47-70.
  • Mohamad, R., Dobry,R., 1986. Undrained monotonic and cyclic triaxial strength of sand. Journal of Geotechnical Engineering, 112 (10), 941-958.
  • Norris, G.M., Siddharthan, R., Zafir, Z., Madhu, R., 1995. Liquefaction and residual strength of sands from drained triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123 (3), 220-228.
  • Palmer, J., 1997. Undrained lateral compression response from drained lateralcompression test. University of Nevada, Reno, USA, Ph.D.Thesis, 440 p.
  • Seed, H.B., Mori, K., Chan, C.K., 1975. Influence of seismic history on the liquefaction characteristics of sands. UCB/EERC-75/25 Report, University of California, Berkeley, CA.,33p.
  • Seed, H. B., Idriss, I. M., 1982. Ground Motions and Soil Liquefaction During Earthquakes.
  • Earthquake Engineering Research Institute Monograph, EERI, Oakland, CA., 134 p.
  • Seed, H.B., Idriss, I.M., Arango, I., 1983. Evaluation of liquefaction potential using field
  • performance data. Journal of Geotechnical Engineering Division, ASCE, 109 (3), 458-482.
  • Tsuchida, H., 1970. Prediction and countermeasure against the liquefaction in sand deposits. Seminar in the Port and Harbor Research Institute, Abstracts, 3.1 - 3.33, Japan (In Japanese).
  • Ulamis, K., Yang, H. J., 2010. The prediction of the excess pore water pressure generation and the vertical strain in different cyclic stress ratio loadings under anisotropic undrained conditions. GSA Annual Meeting - Denver Colorado, USA ( In DVD).
  • Ulamis, K., Yang, H. J., 2011. Soil permeability related to liquefaction potential under anisotropic cyclic triaxial test, 43rd Engineering Geology and Geotechnical Engineering Symposium, 1 (1), 481-489.
  • Yang, H.J., 2005. Extension/compression test stress-strain-volume change characterization under drained conditions. University of Nevada, Reno, Ph.D. Thesis, 431 p.
There are 19 citations in total.

Details

Subjects Geological Sciences and Engineering (Other)
Journal Section Makaleler - Articles
Authors

Koray Ulamış

Horng Jyh Yang This is me

Gary Norris This is me

Publication Date December 15, 2012
Submission Date March 22, 2012
Published in Issue Year 2012 Volume: 36 Issue: 2

Cite

APA Ulamış, K., Yang, H. J., & Norris, G. (2012). Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi. Jeoloji Mühendisliği Dergisi, 36(2), 115-124.