Research Article
BibTex RIS Cite

Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code

Year 2021, Volume: 2 Issue: 2, 99 - 111, 01.12.2021

Abstract

Metal forming, machining, crashing, etc. in simulations, not only the boundary conditions are given perfectly, but also another important input is the properties of the material used. Defining these properties correctly increases the confidence in using the results of the simulation in practice. One of the most well-known parametric models representing the stress-strain relationship at different temperatures and strain rates in simulation programs is the Johnson-Cook flow stress model and ductile damage model. However, the process of obtaining JC parameters for the material is quite long and tiring. Combined evaluation of multiple tests and simulation results, curve fitting, regression and optimization procedures necessitate an organized mathematical operation process. With the program written, it was tried to get both fast and accurate parameter results by using different mathematical solution methods. Parameter constants are obtained automatically by entering different test types, test device result format and simulation report format entries in a hierarchical order using the written program. The user can visually check the tests and results with on the same graphics and intervene in the detection of critical points of the tests when necessary. By using different curve fitting algorithms, finding the most suitable parameters is provided.

Supporting Institution

AKÜ BAP

Project Number

18.KARIYER.233

Thanks

This work has been supported by Scientific and Research Project Commission of Afyon Kocatepe University (Project No: 18. Kariyer.233)

References

  • Akbari, M., Buhl, S., Leinenbach, C., Wegener, K., A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding. Journal of Materials Processing Technology 234, 58-71, 2016.
  • Bacha, A., Dominique, D., Klocker, H., On the determination of true stress triaxiality in sheet metal. Journal of Materials Processing Technology 184 (1-3), 272-287, 2007.
  • Banerjee, A., Dhar, S., Acharyya, S., Datta, D., Nayak, N., Determination of Johnson Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel, Materials Science and Engineering: A, 640, 200-209, 2015.
  • Banerjee, B., An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals. 10.13140/RG.2.1.4289.9285, 2005.
  • Banerjee, B., Mpm Validation: A Myriad of Taylor Impact Tests, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA, January 13, 2012.
  • Chen, X., Liao, Q., Niu, Y., Jia, W., Le, Q., Cheng, C., A constitutive relation of AZ80 magnesium alloy during hot deformation based on Arrhenius and Johnson–Cook model. Journal of Materials Research and Technology 8 (2), 1859-1869, 2019.
  • Gupta, S., Abotula, S., Shukla, A., Determination of Johnson–Cook parameters for cast aluminium alloys. Journal of Engineering Materials and Technology, 136 (3), 034502, 1-4, 2014.
  • Immanuel, R. J., Panigrahi, S. K., Deformation behavior of ultrafine grained A356 material processed by cryorolling and development of Johnson–Cook model. Materials Science and Engineering: A 712, 747-756, 2018.
  • Jing, L., Xingya, S., Zhao, L., The dynamic compressive behavior and constitutive modelling of D1 railway wheel steel over a wide range of strain rates and temperatures. Results in Physics 7, 1452-1461, 2017.
  • Johnson, G. R., Cook, W. H., A constitutive model and data for metals subjected to large strains high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 19-21 April, 1983, the Hague, the Netherlands.
  • Johnson, G. R., Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 21 (1). 31-48, 1985.
  • Korkmaz, M. E., Günay, M., Confirmation of johnson-cook model parameters for nimonic 80A alloy by finite element method. Politeknik Dergisi 23(3), 625-632, 2020.
  • Korkmaz, M. E., Yaşar, N., Günay, M., Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Engineering Science and Technology, an International Journal 23 (3), 664-673, 2020.
  • Kupchella, R., Stowe, D., Xiao, X., Algoso, A., Cogar, J., Incorporation of material variability in the Johnson Cook model. Procedia Engineering 103, 318-325, 2015.
  • Lalwani, D. I., Mehta, N. K., Jain, P. K., Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. Journal of Materials Processing Technology 209 (12-13), 5305-5312, 2009.
  • Mareau, C., A thermodynamically consistent formulation of the Johnson–Cook model. Mechanics of Materials 143, 103340, 2020.
  • Niu, L., Cao, M., Liang, Z., Han, B., Zhang, Q., A modified Johnson-Cook model considering strain softening of A356 alloy. Materials Science and Engineering: A 789, 139612, 2020.
  • Praveen, K. V. U., Sastry, G. V. S., Singh, V., Work hardening behaviour of the Ni-Fe based superalloy IN 718, International Symposium of Research Students on Material Science and Engineering December 20-22, 2004, Chennai, India.
  • Raut, N., Shinde, S. Yakkundi, V., Determination of Johnson Cook parameters for Ti-6Al-4 V Grade 5 experimentally by using three different methods. Materials Today: Proceedings 44 (1), 1653-1658, 2021.
  • Shokry, A., On the constitutive modelling of a powder metallurgy nano quasicrystal line Al93Fe3Cr2Ti2 alloy at elevated temperatures. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (118), 1-13, 2019.
  • Shokry, A., Gowid, S., Kharmanda G., An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions. Materials Today Communications 27, 102296, 2021.
  • Shrot, A., Bäker, M., Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science 52 (1), 298-304, 2012.
  • Wang, B., Liu, Z., Shear localization sensitivity analysis for Johnson-Cook constitutive parameters on serrated chips in high-speed machining of Ti6Al4V. Simulation Modelling Practice and Theory 55, 63-76, 2015.
  • Yang, J., Putatunda, S. K., Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Materials Science and Engineering: A 382 (1-2), 265-279, 2004.
  • Zhang, B., Shang, X., Yao, S., Wang, Q., Zhang, Z., Yang, X., Cai, J., Wang K., A Comparative Study on Johnson–Cook, Modified Johnson–Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Hot Deformation Behavior of TA2. High Temperature Materials and Processes 38, 699-714, 2019.

Kod Yardımı İle Çekme Testinden Akış Gerilmesi ve Hasar Modeli Parametre Katsayılarının Tahmini

Year 2021, Volume: 2 Issue: 2, 99 - 111, 01.12.2021

Abstract

Sadece sınır şartlarının kusursuz verilmesi değil, metal şekillendirme, imalat, çarpışma vb. simülasyonlarda en önemli diğer bir girdi de kullanılan malzemeye ait özellikleridir. Bu özelliklerinin doğru tanımlanması, simülasyonun sonuçlarının uygulamada kullanımına olan güveni artırır. Simulasyon programlarında farklı sıcaklıklarda ve şekil değiştirme hızlarında stress-strain ilişkisini temsil eden parametrik modellerin en çok tanınmışlarından biri Johnson-Cook gerilme akışı ve sünek hasar modelidir. Ancak malzemeye ait JC parametrelerinin elde edilmesi süreci oldukça uzun ve yorucudur. Çok sayıda testin ve simülasyon sonuçlarının beraber değerlendirilmesi, eğri uydurma, regresyon ve optimizasyon prosedürleri, organize bir matematiksel işlem uygulama sürecini zorunlu kılar. Yaptığımız program ile farklı yapıdaki testler, test cihazı sonuç ve simülasyon rapor format girdileri, hiyerarşiye uygun bir düzende girilerek, parametre katsayıları otomatik elde edilmektedir. Kullanıcı testlere ve sonuçlara ait ortak grafiklerle görsel olarak kontrol edebilmekte, gerekli durumlarda testlere ait kritik noktaların bulunmasına müdahale edebilmektedir. Farklı eğri uydurma algoritmaları kullanılarak en uygun parametrelerin bulunması sağlanmaktadır.

Project Number

18.KARIYER.233

References

  • Akbari, M., Buhl, S., Leinenbach, C., Wegener, K., A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding. Journal of Materials Processing Technology 234, 58-71, 2016.
  • Bacha, A., Dominique, D., Klocker, H., On the determination of true stress triaxiality in sheet metal. Journal of Materials Processing Technology 184 (1-3), 272-287, 2007.
  • Banerjee, A., Dhar, S., Acharyya, S., Datta, D., Nayak, N., Determination of Johnson Cook material and failure model constants and numerical modelling of Charpy impact test of armour steel, Materials Science and Engineering: A, 640, 200-209, 2015.
  • Banerjee, B., An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals. 10.13140/RG.2.1.4289.9285, 2005.
  • Banerjee, B., Mpm Validation: A Myriad of Taylor Impact Tests, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA, January 13, 2012.
  • Chen, X., Liao, Q., Niu, Y., Jia, W., Le, Q., Cheng, C., A constitutive relation of AZ80 magnesium alloy during hot deformation based on Arrhenius and Johnson–Cook model. Journal of Materials Research and Technology 8 (2), 1859-1869, 2019.
  • Gupta, S., Abotula, S., Shukla, A., Determination of Johnson–Cook parameters for cast aluminium alloys. Journal of Engineering Materials and Technology, 136 (3), 034502, 1-4, 2014.
  • Immanuel, R. J., Panigrahi, S. K., Deformation behavior of ultrafine grained A356 material processed by cryorolling and development of Johnson–Cook model. Materials Science and Engineering: A 712, 747-756, 2018.
  • Jing, L., Xingya, S., Zhao, L., The dynamic compressive behavior and constitutive modelling of D1 railway wheel steel over a wide range of strain rates and temperatures. Results in Physics 7, 1452-1461, 2017.
  • Johnson, G. R., Cook, W. H., A constitutive model and data for metals subjected to large strains high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, 19-21 April, 1983, the Hague, the Netherlands.
  • Johnson, G. R., Cook, W. H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics 21 (1). 31-48, 1985.
  • Korkmaz, M. E., Günay, M., Confirmation of johnson-cook model parameters for nimonic 80A alloy by finite element method. Politeknik Dergisi 23(3), 625-632, 2020.
  • Korkmaz, M. E., Yaşar, N., Günay, M., Numerical and experimental investigation of cutting forces in turning of Nimonic 80A superalloy. Engineering Science and Technology, an International Journal 23 (3), 664-673, 2020.
  • Kupchella, R., Stowe, D., Xiao, X., Algoso, A., Cogar, J., Incorporation of material variability in the Johnson Cook model. Procedia Engineering 103, 318-325, 2015.
  • Lalwani, D. I., Mehta, N. K., Jain, P. K., Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model. Journal of Materials Processing Technology 209 (12-13), 5305-5312, 2009.
  • Mareau, C., A thermodynamically consistent formulation of the Johnson–Cook model. Mechanics of Materials 143, 103340, 2020.
  • Niu, L., Cao, M., Liang, Z., Han, B., Zhang, Q., A modified Johnson-Cook model considering strain softening of A356 alloy. Materials Science and Engineering: A 789, 139612, 2020.
  • Praveen, K. V. U., Sastry, G. V. S., Singh, V., Work hardening behaviour of the Ni-Fe based superalloy IN 718, International Symposium of Research Students on Material Science and Engineering December 20-22, 2004, Chennai, India.
  • Raut, N., Shinde, S. Yakkundi, V., Determination of Johnson Cook parameters for Ti-6Al-4 V Grade 5 experimentally by using three different methods. Materials Today: Proceedings 44 (1), 1653-1658, 2021.
  • Shokry, A., On the constitutive modelling of a powder metallurgy nano quasicrystal line Al93Fe3Cr2Ti2 alloy at elevated temperatures. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (118), 1-13, 2019.
  • Shokry, A., Gowid, S., Kharmanda G., An improved generic Johnson-Cook model for the flow prediction of different categories of alloys at elevated temperatures and dynamic loading conditions. Materials Today Communications 27, 102296, 2021.
  • Shrot, A., Bäker, M., Determination of Johnson–Cook parameters from machining simulations. Computational Materials Science 52 (1), 298-304, 2012.
  • Wang, B., Liu, Z., Shear localization sensitivity analysis for Johnson-Cook constitutive parameters on serrated chips in high-speed machining of Ti6Al4V. Simulation Modelling Practice and Theory 55, 63-76, 2015.
  • Yang, J., Putatunda, S. K., Influence of a novel two-step austempering process on the strain-hardening behavior of austempered ductile cast iron (ADI). Materials Science and Engineering: A 382 (1-2), 265-279, 2004.
  • Zhang, B., Shang, X., Yao, S., Wang, Q., Zhang, Z., Yang, X., Cai, J., Wang K., A Comparative Study on Johnson–Cook, Modified Johnson–Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict Hot Deformation Behavior of TA2. High Temperature Materials and Processes 38, 699-714, 2019.
There are 25 citations in total.

Details

Primary Language English
Subjects Material Characterization
Journal Section Research Articles
Authors

Ahmet Çetkin 0000-0003-4592-5632

Project Number 18.KARIYER.233
Publication Date December 1, 2021
Submission Date March 25, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Çetkin, A. (2021). Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code. Journal of Materials and Mechatronics: A, 2(2), 99-111.
AMA Çetkin A. Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code. J. Mater. Mechat. A. December 2021;2(2):99-111.
Chicago Çetkin, Ahmet. “Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test With The Help of Code”. Journal of Materials and Mechatronics: A 2, no. 2 (December 2021): 99-111.
EndNote Çetkin A (December 1, 2021) Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code. Journal of Materials and Mechatronics: A 2 2 99–111.
IEEE A. Çetkin, “Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code”, J. Mater. Mechat. A, vol. 2, no. 2, pp. 99–111, 2021.
ISNAD Çetkin, Ahmet. “Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test With The Help of Code”. Journal of Materials and Mechatronics: A 2/2 (December 2021), 99-111.
JAMA Çetkin A. Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code. J. Mater. Mechat. A. 2021;2:99–111.
MLA Çetkin, Ahmet. “Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test With The Help of Code”. Journal of Materials and Mechatronics: A, vol. 2, no. 2, 2021, pp. 99-111.
Vancouver Çetkin A. Estimate of The Flow Stress and Damage Model Parameter Coefficients from Tensile Test with The Help of Code. J. Mater. Mechat. A. 2021;2(2):99-111.