Research Article
BibTex RIS Cite

Türkiye'de Müstakil Bir Konut İçin Kurşun-Asit Pil Destekli Yakıt Pilinin Tekno-Ekonomik Analizi

Year 2022, Volume: 3 Issue: 1, 106 - 116, 06.06.2022
https://doi.org/10.55546/jmm.1088723

Abstract

Yenilenebilir enerji kaynaklarının penetrasyon oranı her geçen gün artmaktadır. Ancak, çoğu güneş, rüzgar, yağış gibi hava koşullarına bağlıdır. Bu bağımlılık aynı zamanda şebekeden bağımsız sistemler için güvenilirlik sorunları oluşturmaktadır. Yakıt pilleri hava koşullarına bağlı olmayan yenilenebilir bir enerji kaynağı olarak elektrik enerjisi üretmek için hidrojene ihtiyaç duyduklarından bu sorunların üstesinden gelmek için temel çözümlerdir. Bu araştırmada, şebekeden izole edilmiş ve enerjisini pil destekli PEM yakıt hücresi kullanarak sağlayan bir son kullanıcı profili, oluşturulan senaryolar kapsamında simülasyon ortamında teknik olarak incelenmiştir. Böylece gerçekte uygulanması amaçlanan sistemler simülasyon ortamına aktarılmıştır. Çalışma sırasında, pil paketinin derin deşarj ve aşırı şarj olmasını önlemek için yakıt hücresi minimum %40 ile maksimum %90 Şarj Durumu (SoC) arasında çalışır durumda tutulmuştur. Bu sisteme dayalı olarak, pil destekli bir yakıt pili besleme sistemi için ilk yatırım, işletme ve bakım maliyetleri hesaplanmış ve sunulmuştur. Pil destekli yakıt hücresi sistemi, şebeke fiyatlarına göre daha düşük tüketim durumları için %46 ve daha yüksek tüketim durumları için %63 daha pahalı olduğu görülmüştür.

References

  • Akarslan E., Doğan R., A novel approach for residential load appliance identification, Sustainable Cities and Society, 63 (102484), 2020.
  • Amani H., Kariminezhad H., Kazemzadeh H., Development of natural gas flow rate in pipeline networks based on unsteady state Weymouth equation, Journal of natural gas science and engineering, 33, 427-437, 2016.
  • APFCT, DuraPEM W240 User Manual, Document No: USRMAN DuraPEM W240, 20s, 2016.
  • Buonomano A., Calise F., d'Accadia M. D., Vicidomini M., A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment, Energy, 155, 174-189, 2018.
  • Doğan R., Karaarslan A., The Application of Battery Charging Circuit using PEM Fuel-Cell, ISMSIT 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, October 21-23, 2017a, Tokat.
  • Doğan R., Karaarslan A., The Hybrid Control Method of Compound DC Motor using Fuel-Cell and Battery, ISMSIT 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, October 21-23, 2017b, Tokat.
  • Dorer V., Weber R., Weber A., Performance assessment of fuel cell micro-cogeneration systems for residential buildings, Energy and Buildings, 37, 1132-1146, 2005.
  • Ghenai C., Salameh T., Merabet A., Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential communityin desert region, International Journal of Hydrogen Energy, 45, 11460-11470, 2020.
  • Li Y., Gao W., Zhang X., Ruan Y., Ushifusa Y., Hiroatsu F., Techno-economic performance analysis of zero energy house applications with home energy management system in Japan, Energy & Buildings, 214 (100862), 2020.
  • Nielsen E. R., Prag C. B., Bachmann T. M., Carnicelli F., Boyd E., Walker I., Ruf L., Stephens A., Status on Demonstration of Fuel Cell BasedMicro-CHP Units in Europe, Fuel Cells, 19:4, 340-345, 2019.
  • O’Hayre R. (Ed.), Cha S. W., Colella W. G., Prinz, F. B., Fuel Cell Fundamentals, Wiley & Sons Press, 583p, New Jersey, USA, 2016.
  • Özkara Ö., Tokgöz N., Doğan R., Karaarslan A., The Analysis of OCC and PI Control Method for Isolated Fly-Back Converter using PEM Fuel Cells, Gaziosmanpaşa Bilimsel Araştırma Dergisi, 6, 40-49, 2017.
  • Lokar J., Virtic P., The potential for integration of hydrogen for complete energy self-sufficiency in residential buildings with photovoltaic and battery storage systems, International Journal of Hydrogen Energy, 45, 34566-34578, 2020.
  • Patterson M., Macia F. N., Kannan A. M., Hybrid Microgrid Model Based on Solar Photovoltaic Battery Fuel Cell System for Intermittent Load Applications, IEEE Transactions on Energy Conversion, 30(1), 359-366, 2015.
  • Ronaszegi K., Fraga E. S., Darr J., Shearing P.R., Brett D. J. L., Application of Photo-Electrochemically Generated Hydrogen with Fuel Cell Based Micro-Combined Heat and Power: A Dynamic System Modelling Study, Molecules, 25, 123-144, 2020.
  • Sarı A., Aktaş M., Yönetken A., Doğan R., Güneş Işınım Tahmininde NARX Modelinin Uygulanması, Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 4(1), 1-6, 2021.
  • Shah A., Mohan V., Sheffield J. W., Martin K. B., Solar powered residential hydrogen fueling station, International Journal of Hydrogen Energy, 36, 13132-13137, 2011.
  • Swarnakar S. C., Podder A. K., Tariquzzaman M., Solar, Fuel Cell and Battery Based Hybrid Energy Solution for Residential Appliances, 4th International Conference on Electrical Information and Communication Technology (EICT), December 20-22, 2019, Khulna, Bangladesh
  • Tribioli L., Cozzolino R., Techno-economic analysis of a stand-alone microgrid for a commercial building in eight different climate zones, Energy Conversion and Management, 179, 58-71, 2019.
  • Uzunoğlu M., Onar O. C., Alam M. S., Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications, Renewable Energy, 34, 509-520, 2009.

Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey

Year 2022, Volume: 3 Issue: 1, 106 - 116, 06.06.2022
https://doi.org/10.55546/jmm.1088723

Abstract

The penetration rate of renewable energy sources is increasing day by day. However, most depend on the weather conditions such as solar, wind, precipitation, etc. This dependency also creates reliability problems for stand-alone systems. Fuel cells are essential solutions to overcome these issues since they need hydrogen to produce electrical energy, one renewable energy source that does not depend on weather conditions. In this research, an end-user profile, isolated from the grid and provides its energy by using a battery-backed PEM fuel cell, has been technically investigated in the simulation environment within the scope of the scenarios created. So, the systems intended to be implemented in reality have been transferred to the simulation environment. During the operation, to prevent deep discharge and overcharge of the battery pack, the fuel cell is kept in operation between a minimum of 40% and a maximum 90% State of Charge (SoC). Based on this system, initial investment, operation, and maintenance costs for a battery-backed fuel cell supply system are calculated and presented. The battery-supported fuel cell system is 46% expensive for lower consumption cases and 63% more expensive for higher consumption cases than grid prices.

References

  • Akarslan E., Doğan R., A novel approach for residential load appliance identification, Sustainable Cities and Society, 63 (102484), 2020.
  • Amani H., Kariminezhad H., Kazemzadeh H., Development of natural gas flow rate in pipeline networks based on unsteady state Weymouth equation, Journal of natural gas science and engineering, 33, 427-437, 2016.
  • APFCT, DuraPEM W240 User Manual, Document No: USRMAN DuraPEM W240, 20s, 2016.
  • Buonomano A., Calise F., d'Accadia M. D., Vicidomini M., A hybrid renewable system based on wind and solar energy coupled with an electrical storage: Dynamic simulation and economic assessment, Energy, 155, 174-189, 2018.
  • Doğan R., Karaarslan A., The Application of Battery Charging Circuit using PEM Fuel-Cell, ISMSIT 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, October 21-23, 2017a, Tokat.
  • Doğan R., Karaarslan A., The Hybrid Control Method of Compound DC Motor using Fuel-Cell and Battery, ISMSIT 1st International Symposium on Multidisciplinary Studies and Innovative Technologies, October 21-23, 2017b, Tokat.
  • Dorer V., Weber R., Weber A., Performance assessment of fuel cell micro-cogeneration systems for residential buildings, Energy and Buildings, 37, 1132-1146, 2005.
  • Ghenai C., Salameh T., Merabet A., Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential communityin desert region, International Journal of Hydrogen Energy, 45, 11460-11470, 2020.
  • Li Y., Gao W., Zhang X., Ruan Y., Ushifusa Y., Hiroatsu F., Techno-economic performance analysis of zero energy house applications with home energy management system in Japan, Energy & Buildings, 214 (100862), 2020.
  • Nielsen E. R., Prag C. B., Bachmann T. M., Carnicelli F., Boyd E., Walker I., Ruf L., Stephens A., Status on Demonstration of Fuel Cell BasedMicro-CHP Units in Europe, Fuel Cells, 19:4, 340-345, 2019.
  • O’Hayre R. (Ed.), Cha S. W., Colella W. G., Prinz, F. B., Fuel Cell Fundamentals, Wiley & Sons Press, 583p, New Jersey, USA, 2016.
  • Özkara Ö., Tokgöz N., Doğan R., Karaarslan A., The Analysis of OCC and PI Control Method for Isolated Fly-Back Converter using PEM Fuel Cells, Gaziosmanpaşa Bilimsel Araştırma Dergisi, 6, 40-49, 2017.
  • Lokar J., Virtic P., The potential for integration of hydrogen for complete energy self-sufficiency in residential buildings with photovoltaic and battery storage systems, International Journal of Hydrogen Energy, 45, 34566-34578, 2020.
  • Patterson M., Macia F. N., Kannan A. M., Hybrid Microgrid Model Based on Solar Photovoltaic Battery Fuel Cell System for Intermittent Load Applications, IEEE Transactions on Energy Conversion, 30(1), 359-366, 2015.
  • Ronaszegi K., Fraga E. S., Darr J., Shearing P.R., Brett D. J. L., Application of Photo-Electrochemically Generated Hydrogen with Fuel Cell Based Micro-Combined Heat and Power: A Dynamic System Modelling Study, Molecules, 25, 123-144, 2020.
  • Sarı A., Aktaş M., Yönetken A., Doğan R., Güneş Işınım Tahmininde NARX Modelinin Uygulanması, Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 4(1), 1-6, 2021.
  • Shah A., Mohan V., Sheffield J. W., Martin K. B., Solar powered residential hydrogen fueling station, International Journal of Hydrogen Energy, 36, 13132-13137, 2011.
  • Swarnakar S. C., Podder A. K., Tariquzzaman M., Solar, Fuel Cell and Battery Based Hybrid Energy Solution for Residential Appliances, 4th International Conference on Electrical Information and Communication Technology (EICT), December 20-22, 2019, Khulna, Bangladesh
  • Tribioli L., Cozzolino R., Techno-economic analysis of a stand-alone microgrid for a commercial building in eight different climate zones, Energy Conversion and Management, 179, 58-71, 2019.
  • Uzunoğlu M., Onar O. C., Alam M. S., Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications, Renewable Energy, 34, 509-520, 2009.
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Muzaffer Aktaş 0000-0002-7444-3512

Rasim Doğan 0000-0003-2122-9528

Publication Date June 6, 2022
Submission Date March 16, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Aktaş, M., & Doğan, R. (2022). Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey. Journal of Materials and Mechatronics: A, 3(1), 106-116. https://doi.org/10.55546/jmm.1088723
AMA Aktaş M, Doğan R. Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey. J. Mater. Mechat. A. June 2022;3(1):106-116. doi:10.55546/jmm.1088723
Chicago Aktaş, Muzaffer, and Rasim Doğan. “Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey”. Journal of Materials and Mechatronics: A 3, no. 1 (June 2022): 106-16. https://doi.org/10.55546/jmm.1088723.
EndNote Aktaş M, Doğan R (June 1, 2022) Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey. Journal of Materials and Mechatronics: A 3 1 106–116.
IEEE M. Aktaş and R. Doğan, “Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey”, J. Mater. Mechat. A, vol. 3, no. 1, pp. 106–116, 2022, doi: 10.55546/jmm.1088723.
ISNAD Aktaş, Muzaffer - Doğan, Rasim. “Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey”. Journal of Materials and Mechatronics: A 3/1 (June 2022), 106-116. https://doi.org/10.55546/jmm.1088723.
JAMA Aktaş M, Doğan R. Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey. J. Mater. Mechat. A. 2022;3:106–116.
MLA Aktaş, Muzaffer and Rasim Doğan. “Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey”. Journal of Materials and Mechatronics: A, vol. 3, no. 1, 2022, pp. 106-1, doi:10.55546/jmm.1088723.
Vancouver Aktaş M, Doğan R. Techno-Economic Analysis of A Lead-Acid Battery-Supported Fuel Cell for A Stand-Alone Residential House in Turkey. J. Mater. Mechat. A. 2022;3(1):106-1.