Research Article
BibTex RIS Cite

Experimental Investigation of Ballistic Performance of Free Particle Armor Systems

Year 2023, Volume: 4 Issue: 2, 518 - 543, 26.12.2023
https://doi.org/10.55546/jmm.1354113

Abstract

Recent armor studies generally rely on improving the single-shot capabilities of ceramic armors. In multi-shot studies, ballistics tests assume that there is a certain distribution, so these successive shots were not made from exact same point. With these shots, thus, the armor completely loses its effectiveness. In this study, the ballistic performance of damaged and undamaged free particle armor system in multiple hits from exact same and different points was experimentally investigated. The new armor system, consisting Al2O3 free ceramic balls, tested with 9 mm FMJ and 7.62 mm API ammunition. This armor system prevented perforation in multi-hits from the same point, and the depth of depression in ballistic clay was 9.42 mm and bullet deviation in trajectory was 27 mm. In the shots with dispersion, depression depth was limited to 3.52 mm and deviation increased with each shot. As a result, it has been found that the free particle armor system performs more ballistic efficiency than conventional armors even in the most challenging conditions. The ceramic balls, being more irregularly and densely spaced with each shot, increase the likelihood of the bullet hitting at larger angles and increase ricochet in direct proportion.

References

  • Backman, M. E., Terminal Ballistics, Naval Weapons Center China Lake CA, 1976.
  • Bhat, A., Naveen, J., Jawaid, M., Norrrahim, M. N. F., Rashedi, A. and Khan, A., Advancement in Fiber Reinforced Polymer, Metal Alloys and Multi-Layered Armour Systems for Ballistic Applications – A Review, Journal of Materials Research and Technology, 15, 1300–1317, 2021. DOI: 10.1016/j.jmrt.2021.08.150
  • Bi̇çer, H., Reactive Sintering of Boron Carbide Based Ceramics by SPS, Journal of Materials and Mechatronics: A 3(1), 129–36, 2022. DOI: 10.55546/jmm.1072466
  • Bozdoğan, F., Üngün, S., Temel, E. and Mengüç, G. S., Textile Materials Used for Ballistic Protection, Properties and Ballistic Performance Tests, 2015.
  • Bracamonte, L., Loutfy, R., Yilmazcoban, I. K. and Rajan, S. D., 12 - Design, Manufacture, and Analysis of Ceramic-Composite Armor, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 349–67, 2016.
  • Bracamonte, L., Loutfy, R., Yilmazcoban, I. K. and Rajan, S. D., 12 - Design, Manufacture, and Analysis of Ceramic-Composite Armor, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 349–67, 2016.
  • Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M. and Garcia, H., Alginate as Template in the Preparation of Active Titania Photocatalysts, ChemCatChem 5(2), 513–18, 2013. DOI: 10.1002/cctc.201200386
  • Carter, C. B. and Norton, M. G., Ceramic Materials: Science and Engineering, Springer Science & Business Media, 727, 2007.
  • Cheng, M., Chen, W. and Weerasooriya, T., Experimental Investigation of the Transverse Mechanical Properties of a Single Kevlar® KM2 Fiber, International Journal of Solids and Structures 41(22), 6215–32, 2004. DOI: 10.1016/j.ijsolstr.2004.05.016
  • Chi, R., Serjouei, A., Sridhar, I. and Tan, G. E. B., Ballistic Impact on Bi-Layer Alumina/Aluminium Armor: A Semi-Analytical Approach, International Journal of Impact Engineering, 52, 37–46, 2013. DOI: 10.1016/j.ijimpeng.2012.10.001
  • Craig, Industry Ballistic and Stab Resistant Standards, Craig International Ballistics (blog), 2009.
  • Crouch, I. Ed., The Science of Armour Materials, Waltham, MA: Woodhead Publishing, 754, 2016.
  • Dresch, A. B., Venturini, J., Arcaro, S., Montedo, O. R. K. and Bergmann, C. P., Ballistic Ceramics and Analysis of Their Mechanical Properties for Armour Applications: A Review, Ceramics International 47(7), 8743–61, 2021. DOI: 10.1016/j.ceramint.2020.12.095
  • Gadow, R. and Kern, F., 2.06 - Advanced Manufacturing of Hard Ceramics, in Comprehensive Hard Materials, V. K. Sarin, Ed., Oxford: Elsevier, 207–30, 2014.
  • Gent, A., Major Industrial Polymers, Encyclopedia Britannica, 2009.
  • Goh, W. L., Zheng, Y., Yuan, J. and Ng, K. W., Effects of Hardness of Steel on Ceramic Armour Module against Long Rod Impact, International Journal of Impact Engineering, 109, 419–26, 2017. DOI: 10.1016/j.ijimpeng.2017.08.004
  • Goh, Wei Liang, Luo, B., Zeng, Z., Jianming, Y. and Ng, K. W., Effects of Hardness and Toughness of Ceramic in a Ceramic Armour Module Against Long Rod Impacts: Ceramic Engineering and Science Proceedings 39(2), 185–98, 2019.
  • Grujicic, M., Pandurangan, B. and Entremont, B. d’, The Role of Adhesive in the Ballistic/Structural Performance of Ceramic/Polymer–Matrix Composite Hybrid Armor, Materials & Design, 41, 380–93, 2012. DOI: 10.1016/j.matdes.2012.05.023
  • Guo, G., Alam, S. and Peel, L. D., An Investigation of the Effect of a Kevlar-29 Composite Cover Layer on the Penetration Behavior of a Ceramic Armor System against 7.62 Mm APM2 Projectiles, International Journal of Impact Engineering, 157, 2021. DOI: 10.1016/j.ijimpeng.2021.104000
  • Guo, G., Alam, S. and Peel, L. D., Numerical Analysis of Ballistic Impact Performance of Two Ceramic-Based Armor Structures, Composites Part C 3, 2020. DOI: 10.1016/j.jcomc.2020.100061
  • Hazell, P. J., Armour: Materials, Theory, and Design, CRC Press, 2015.
  • Heimann, R. B., Classic and Advanced Ceramics: From Fundamentals to Applications, John Wiley & Sons, 576, 2010.
  • Helliker, A., 4 - Ballistic Threats: Bullets and Fragments, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 87–114, 2016.
  • Işık, A., The Effect of Free Particle Modular Armor System Design on Ballistic Performance (Serbest Parçacık İçeren Modüler Zırh Sistemi Tasarımının Balistik Performansa Etkisi), Alparslan Defence Sciences and National Security Institute, 2021.
  • Karahan, M., Kus, A. and Eren, R., An Investigation into Ballistic Performance and Energy Absorption Capabilities of Woven Aramid Fabrics, International Journal of Impact Engineering, 35, 499–510, 2008. DOI: 10.1016/j.ijimpeng.2007.04.003
  • Karandikar, P., Evans, G., Wong, S., Aghajanian, M. and Sennett, M., A Review of Ceramics For Armor Applications, in Ceramic Engineering and Science Proceedings, 163–75, 2009.
  • Klement, R., Rolc, S., Mikulikova, R. and Krestan, J., Transparent Armour Materials, Journal of the European Ceramic Society 5(28), 1091–95, 2008. DOI: 10.1016/j.jeurceramsoc.2007.09.036
  • Medvedovski, E., Ballistic Performance of Armour Ceramics: Influence of Design and Structure. Part 1, Ceramics International 36(7), 2103–15, 2010a. DOI: 10.1016/j.ceramint.2010.05.021
  • Medvedovski, E., Ballistic Performance of Armour Ceramics: Influence of Design and Structure. Part 2, Ceramics International, 36, 2117–27, 2010b. DOI: 10.1016/j.ceramint.2010.05.022
  • Orange, G., Fantozzi, G., Bigay, Y. and TORRE, J. P., Transformation Toughening in Ceramics : Mechanical Properties and Temperature Dependence of Tetragonal Polycrystalline Zirconia (TZP), Http://Dx.Doi.Org/10.1051/Jphyscol:19861100, 1986. DOI: 10.1051/jphyscol:19861100
  • Santos, C. J. E., Wei, T.-S., Cho, B. and Kriven, W. M., A Forming Technique to Produce Spherical Ceramic Beads Using Sodium Alginate as a Precursor Binder Phase, Journal of the American Ceramic Society 96(11), 3379–88, 2013. DOI: 10.1111/jace.12584
  • Swab, J. J., Zhu, D. and Kriven, W. M., Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, 2005, Cocoa Beach, FL, Wiley, 300, 2005.
  • Tressler, R. E., An Assessment of Low Cost Manufacturing Technology for Advanced Structural Ceramics and Its Impact on Ceramic Armor, Ceramic Transactions, 134, 451–62, 2002.
  • Wadley, H. N. G., O’Masta, M. R., Dharmasena, K. P., Compton, B. G., Gamble, E. A. and Zok, F. W., Effect of Core Topology on Projectile Penetration in Hybrid Aluminum/Alumina Sandwich Structures, International Journal of Impact Engineering, 62, 99–113, 2013. DOI: 10.1016/j.ijimpeng.2013.05.008
  • Yang, M. and Qiao, P., 4 - High Energy Absorbing Materials for Blast Resistant Design, in Blast Protection of Civil Infrastructures and Vehicles Using Composites, N. Uddin, Ed., Woodhead Publishing, 88–119, 2010.
  • Yungwirth, C. J., O’Connor, J., Zakraysek, A., Deshpande, V. S. and Wadley, H. N. G., Explorations of Hybrid Sandwich Panel Concepts for Projectile Impact Mitigation: Explorations of Hybrid Sandwich Panel Concepts for Projectile Impact Mitigation, Journal of the American Ceramic Society, 94, 62–75, 2011. DOI: 10.1111/j.1551-2916.2011.04501.x
  • Zaera, R. and Sánchez-Gálvez, V., Analytical Modelling of Normal and Oblique Ballistic Impact on Ceramic/Metal Lightweight Armours, International Journal of Impact Engineering 21(3), 133–48, 1998. DOI: 10.1016/S0734-743X(97)00035-3
  • Zahraee, S. M. and Sabet, A. R., Ballistic Performance of Hybrid Armor with Ceramic Inserts and Polymeric Matrix for Different Threat Levels (TECHNICAL NOTE), International Journal of Engineering 27(6), 945–50, 2014.

Serbest Parçacıklı Zırh Sistemlerinin Balistik Performansının Deneysel Olarak İncelenmesi

Year 2023, Volume: 4 Issue: 2, 518 - 543, 26.12.2023
https://doi.org/10.55546/jmm.1354113

Abstract

Günümüz zırh çalışmalarında, araştırmacılar tarafından seramik zırhların çoklu atışlardaki performanslarından ziyade tek vuruş kabiliyetlerinin geliştirilmesine odaklanılmaktadır. Çok atışlı testlerde ise belli bir dağılım olduğu varsayılmakta bu nedenle tam olarak aynı nokta üzerinden atışlar yapılmamaktadır. Dağılım ile yapılan bu atışlarda ise zırhlar etkinliğini büyük oranda yitirmektedir. Bu çalışmada, literatürde yer almayan ve tam olarak aynı nokta üzerinden, hasar almış ve hasar almamış zırh sistemine yapılan mükerrer atışların serbest parçacıklı zırh sisteminin balistik performansına olan etkisi ile belirli bir dağılım çapındaki çoklu vuruşlardaki davranışları deneysel olarak ortaya çıkarılmaya çalışılmıştır. Bu kapsamda, Al2O3 serbest yapılı seramik bilyelerle oluşturulan yeni zırh sistemi, 9 mm FMJ ve 7.62 mm API mühimmatları ile gerçek zamanlı atışlarla standartlara uygun olarak test edilmiştir. Tam olarak aynı noktadan yapılan çoklu atışlarda, zırh sisteminin perforasyon oluşumunu önlendiği, balistik kil çöküntü derinliğinin 9.42 mm ve sapma miktarının 27 mm olduğu tespit edilmiştir. 40 mm dağılma çapı ile yapılan atışlarda ise çöküntü derinliği 3.52 mm ile sınırlı kalırken sapma miktarı 46 mm olmuştur. Zırh delici mühimmat atışında, seramik bilyelerin kinetik enerjiyi aramid katmanlara ulaşmadan büyük oranda absorbe ettiği ve mühimmatın bütünlüğünün bozulduğu tespit edilmiştir. Sonuç olarak, seramik bilyelerle oluşturulan serbest parçacıklı zırh sisteminin balistik koruyuculuğunun, konvensiyonel zırhlara göre en zayıf şartlarda dahi başarılı olduğu, devamlı atışlarda yapısal olarak daha yoğun hale gelerek etkileşimde bulunan mermiyi her atışla beraber daha yüksek oranlarda mermi yolundan saptırdığı görülmüştür.

Thanks

This study is derived from the master's thesis titled "The Effect of Free Particle Modular Armor System Design on Ballistic Performance". We thank CES Advanced Composites and Defense Techonologies INC (Ankara/Turkey) for ballistic testing laboratory facilities.

References

  • Backman, M. E., Terminal Ballistics, Naval Weapons Center China Lake CA, 1976.
  • Bhat, A., Naveen, J., Jawaid, M., Norrrahim, M. N. F., Rashedi, A. and Khan, A., Advancement in Fiber Reinforced Polymer, Metal Alloys and Multi-Layered Armour Systems for Ballistic Applications – A Review, Journal of Materials Research and Technology, 15, 1300–1317, 2021. DOI: 10.1016/j.jmrt.2021.08.150
  • Bi̇çer, H., Reactive Sintering of Boron Carbide Based Ceramics by SPS, Journal of Materials and Mechatronics: A 3(1), 129–36, 2022. DOI: 10.55546/jmm.1072466
  • Bozdoğan, F., Üngün, S., Temel, E. and Mengüç, G. S., Textile Materials Used for Ballistic Protection, Properties and Ballistic Performance Tests, 2015.
  • Bracamonte, L., Loutfy, R., Yilmazcoban, I. K. and Rajan, S. D., 12 - Design, Manufacture, and Analysis of Ceramic-Composite Armor, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 349–67, 2016.
  • Bracamonte, L., Loutfy, R., Yilmazcoban, I. K. and Rajan, S. D., 12 - Design, Manufacture, and Analysis of Ceramic-Composite Armor, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 349–67, 2016.
  • Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M. and Garcia, H., Alginate as Template in the Preparation of Active Titania Photocatalysts, ChemCatChem 5(2), 513–18, 2013. DOI: 10.1002/cctc.201200386
  • Carter, C. B. and Norton, M. G., Ceramic Materials: Science and Engineering, Springer Science & Business Media, 727, 2007.
  • Cheng, M., Chen, W. and Weerasooriya, T., Experimental Investigation of the Transverse Mechanical Properties of a Single Kevlar® KM2 Fiber, International Journal of Solids and Structures 41(22), 6215–32, 2004. DOI: 10.1016/j.ijsolstr.2004.05.016
  • Chi, R., Serjouei, A., Sridhar, I. and Tan, G. E. B., Ballistic Impact on Bi-Layer Alumina/Aluminium Armor: A Semi-Analytical Approach, International Journal of Impact Engineering, 52, 37–46, 2013. DOI: 10.1016/j.ijimpeng.2012.10.001
  • Craig, Industry Ballistic and Stab Resistant Standards, Craig International Ballistics (blog), 2009.
  • Crouch, I. Ed., The Science of Armour Materials, Waltham, MA: Woodhead Publishing, 754, 2016.
  • Dresch, A. B., Venturini, J., Arcaro, S., Montedo, O. R. K. and Bergmann, C. P., Ballistic Ceramics and Analysis of Their Mechanical Properties for Armour Applications: A Review, Ceramics International 47(7), 8743–61, 2021. DOI: 10.1016/j.ceramint.2020.12.095
  • Gadow, R. and Kern, F., 2.06 - Advanced Manufacturing of Hard Ceramics, in Comprehensive Hard Materials, V. K. Sarin, Ed., Oxford: Elsevier, 207–30, 2014.
  • Gent, A., Major Industrial Polymers, Encyclopedia Britannica, 2009.
  • Goh, W. L., Zheng, Y., Yuan, J. and Ng, K. W., Effects of Hardness of Steel on Ceramic Armour Module against Long Rod Impact, International Journal of Impact Engineering, 109, 419–26, 2017. DOI: 10.1016/j.ijimpeng.2017.08.004
  • Goh, Wei Liang, Luo, B., Zeng, Z., Jianming, Y. and Ng, K. W., Effects of Hardness and Toughness of Ceramic in a Ceramic Armour Module Against Long Rod Impacts: Ceramic Engineering and Science Proceedings 39(2), 185–98, 2019.
  • Grujicic, M., Pandurangan, B. and Entremont, B. d’, The Role of Adhesive in the Ballistic/Structural Performance of Ceramic/Polymer–Matrix Composite Hybrid Armor, Materials & Design, 41, 380–93, 2012. DOI: 10.1016/j.matdes.2012.05.023
  • Guo, G., Alam, S. and Peel, L. D., An Investigation of the Effect of a Kevlar-29 Composite Cover Layer on the Penetration Behavior of a Ceramic Armor System against 7.62 Mm APM2 Projectiles, International Journal of Impact Engineering, 157, 2021. DOI: 10.1016/j.ijimpeng.2021.104000
  • Guo, G., Alam, S. and Peel, L. D., Numerical Analysis of Ballistic Impact Performance of Two Ceramic-Based Armor Structures, Composites Part C 3, 2020. DOI: 10.1016/j.jcomc.2020.100061
  • Hazell, P. J., Armour: Materials, Theory, and Design, CRC Press, 2015.
  • Heimann, R. B., Classic and Advanced Ceramics: From Fundamentals to Applications, John Wiley & Sons, 576, 2010.
  • Helliker, A., 4 - Ballistic Threats: Bullets and Fragments, in Lightweight Ballistic Composites (Second Edition), A. Bhatnagar, Ed., Woodhead Publishing, 87–114, 2016.
  • Işık, A., The Effect of Free Particle Modular Armor System Design on Ballistic Performance (Serbest Parçacık İçeren Modüler Zırh Sistemi Tasarımının Balistik Performansa Etkisi), Alparslan Defence Sciences and National Security Institute, 2021.
  • Karahan, M., Kus, A. and Eren, R., An Investigation into Ballistic Performance and Energy Absorption Capabilities of Woven Aramid Fabrics, International Journal of Impact Engineering, 35, 499–510, 2008. DOI: 10.1016/j.ijimpeng.2007.04.003
  • Karandikar, P., Evans, G., Wong, S., Aghajanian, M. and Sennett, M., A Review of Ceramics For Armor Applications, in Ceramic Engineering and Science Proceedings, 163–75, 2009.
  • Klement, R., Rolc, S., Mikulikova, R. and Krestan, J., Transparent Armour Materials, Journal of the European Ceramic Society 5(28), 1091–95, 2008. DOI: 10.1016/j.jeurceramsoc.2007.09.036
  • Medvedovski, E., Ballistic Performance of Armour Ceramics: Influence of Design and Structure. Part 1, Ceramics International 36(7), 2103–15, 2010a. DOI: 10.1016/j.ceramint.2010.05.021
  • Medvedovski, E., Ballistic Performance of Armour Ceramics: Influence of Design and Structure. Part 2, Ceramics International, 36, 2117–27, 2010b. DOI: 10.1016/j.ceramint.2010.05.022
  • Orange, G., Fantozzi, G., Bigay, Y. and TORRE, J. P., Transformation Toughening in Ceramics : Mechanical Properties and Temperature Dependence of Tetragonal Polycrystalline Zirconia (TZP), Http://Dx.Doi.Org/10.1051/Jphyscol:19861100, 1986. DOI: 10.1051/jphyscol:19861100
  • Santos, C. J. E., Wei, T.-S., Cho, B. and Kriven, W. M., A Forming Technique to Produce Spherical Ceramic Beads Using Sodium Alginate as a Precursor Binder Phase, Journal of the American Ceramic Society 96(11), 3379–88, 2013. DOI: 10.1111/jace.12584
  • Swab, J. J., Zhu, D. and Kriven, W. M., Advances in Ceramic Armor: A Collection of Papers Presented at the 29th International Conference on Advanced Ceramics and Composites, 2005, Cocoa Beach, FL, Wiley, 300, 2005.
  • Tressler, R. E., An Assessment of Low Cost Manufacturing Technology for Advanced Structural Ceramics and Its Impact on Ceramic Armor, Ceramic Transactions, 134, 451–62, 2002.
  • Wadley, H. N. G., O’Masta, M. R., Dharmasena, K. P., Compton, B. G., Gamble, E. A. and Zok, F. W., Effect of Core Topology on Projectile Penetration in Hybrid Aluminum/Alumina Sandwich Structures, International Journal of Impact Engineering, 62, 99–113, 2013. DOI: 10.1016/j.ijimpeng.2013.05.008
  • Yang, M. and Qiao, P., 4 - High Energy Absorbing Materials for Blast Resistant Design, in Blast Protection of Civil Infrastructures and Vehicles Using Composites, N. Uddin, Ed., Woodhead Publishing, 88–119, 2010.
  • Yungwirth, C. J., O’Connor, J., Zakraysek, A., Deshpande, V. S. and Wadley, H. N. G., Explorations of Hybrid Sandwich Panel Concepts for Projectile Impact Mitigation: Explorations of Hybrid Sandwich Panel Concepts for Projectile Impact Mitigation, Journal of the American Ceramic Society, 94, 62–75, 2011. DOI: 10.1111/j.1551-2916.2011.04501.x
  • Zaera, R. and Sánchez-Gálvez, V., Analytical Modelling of Normal and Oblique Ballistic Impact on Ceramic/Metal Lightweight Armours, International Journal of Impact Engineering 21(3), 133–48, 1998. DOI: 10.1016/S0734-743X(97)00035-3
  • Zahraee, S. M. and Sabet, A. R., Ballistic Performance of Hybrid Armor with Ceramic Inserts and Polymeric Matrix for Different Threat Levels (TECHNICAL NOTE), International Journal of Engineering 27(6), 945–50, 2014.
There are 38 citations in total.

Details

Primary Language English
Subjects Ballistic Systems
Journal Section Research Articles
Authors

Emre Aytav 0000-0003-4296-6703

Abdullah Mahir Işık 0000-0003-2454-5219

Early Pub Date December 25, 2023
Publication Date December 26, 2023
Submission Date September 1, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Aytav, E., & Işık, A. M. (2023). Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. Journal of Materials and Mechatronics: A, 4(2), 518-543. https://doi.org/10.55546/jmm.1354113
AMA Aytav E, Işık AM. Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. J. Mater. Mechat. A. December 2023;4(2):518-543. doi:10.55546/jmm.1354113
Chicago Aytav, Emre, and Abdullah Mahir Işık. “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems”. Journal of Materials and Mechatronics: A 4, no. 2 (December 2023): 518-43. https://doi.org/10.55546/jmm.1354113.
EndNote Aytav E, Işık AM (December 1, 2023) Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. Journal of Materials and Mechatronics: A 4 2 518–543.
IEEE E. Aytav and A. M. Işık, “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems”, J. Mater. Mechat. A, vol. 4, no. 2, pp. 518–543, 2023, doi: 10.55546/jmm.1354113.
ISNAD Aytav, Emre - Işık, Abdullah Mahir. “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems”. Journal of Materials and Mechatronics: A 4/2 (December 2023), 518-543. https://doi.org/10.55546/jmm.1354113.
JAMA Aytav E, Işık AM. Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. J. Mater. Mechat. A. 2023;4:518–543.
MLA Aytav, Emre and Abdullah Mahir Işık. “Experimental Investigation of Ballistic Performance of Free Particle Armor Systems”. Journal of Materials and Mechatronics: A, vol. 4, no. 2, 2023, pp. 518-43, doi:10.55546/jmm.1354113.
Vancouver Aytav E, Işık AM. Experimental Investigation of Ballistic Performance of Free Particle Armor Systems. J. Mater. Mechat. A. 2023;4(2):518-43.