Research Article
BibTex RIS Cite

Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods

Year 2024, Volume: 5 Issue: 2, 341 - 353, 20.12.2024
https://doi.org/10.55546/jmm.1576256

Abstract

With the developing technology, studies on the production and development of new materials are intensifying as traditional materials are inadequate to meet the needs of the industry. As an alternative to traditional steels, the use of low, medium and high entropy alloys and nanomaterials has recently become one of the most suitable solutions. Based on these solutions, in this study; the effect of nanoparticle reinforcement material on the boride layer structure in pack boriding of FeCo alloy, which is described as a soft magnetic alloy and produced by different methods, was investigated. Firstly, 2% and 4% graphene reinforced, medium entropy FeCo alloy was produced by 2 different methods melt casting (MC) and powder metallurgy (PM). Then, medium entropy alloys (MEAs) produced by both methods were subjected to a pack boronizing process at 1073 K temperature for 2 hours. Both the produced MEAs and the boride layers of the borided MEAs were characterized. When the microstructures of the produced alloys are examined, it is seen that with the increase in graphene reinforcement, the tendency for dendritic structure increases in alloys using the MC method, while crack formation increases in alloys using the PM method. According to the XRD pattern analysis of the alloys produced by both methods, peaks belonging to the CoFe phase were detected in the main peaks of the alloys. The microhardness of the alloys ranges between 258 HV0.05 and 314 HV0.05. In the boride layer structures obtained by pack boronizing, no transition zone is formed, they are columnar and have a sawtooth appearance. Boride layer thicknesses range between 22 µm and 34 µm. According to the XRD pattern analysis of the boride layers of the alloys produced by both methods, FeB, Fe2B, CoFe phases were detected in the main peaks, while the Co2Fe phase was also present in the alloys produced by the MC method. The surface microhardness of the boride layers varies between 1922 HV0.05 and 2124 HV0.05.

Ethical Statement

--

Supporting Institution

AFYON KOCATEPE UNIVERSITY

Project Number

22.FEN.BİL.26

Thanks

This study was supported by Afyon Kocatepe University Scientific Research Projects Coordination Unit with Project number of 22.FEN. BİL.26.

References

  • Albaaji A. J., Castle E. G., Reece M. J., Hall J. P., Evans S. L., Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites. Materials and Design 122, 296-306, 2017. https://doi.org/10.1016/j.matdes.2017.02.091.
  • Allaedini G., Tasirin S. M., Aminayi P., Magnetic properties of cobalt ferrite synthesized by hydrothermal method. International Nano Letters 5(4), 183-186, 2015. https://doi.org/10.1007/s40089-015-0153-8.
  • Alkan S., Effect of Boron-Aluminide Coating Applied on R4 Grade Offshore Mooring Chain Steel on Pitting and Tribo-Corrosion Behaviour. Journal of Materials and Mechatronics: A 4(1), 302-317, 2023. https://doi.org/10.55546/jmm.1296633.
  • Bölükbaşı Ö. S., Serindağ T., Gürol U., Günen A., Çam G., Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology 46, 89-97, 2023. https://doi.org/10.1016/j.cirpj.2023.07.011.
  • Campos-Silva I., Bravo-Bárcenas D., Meneses-Amador A., Ortiz-Dominguez M., Cimenoglu H., Figueroa-López U., Andraca-Adame J., Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surface and Coatings Technology 237, 402-414, 2013. https://doi.org/10.1016/j.surfcoat.2013.06.083.
  • Cengiz S., Effect of refractory elements on boronizing properties of the CoCrFeNi high entropy alloy. International Journal of Refractory Metals and Hard Materials, 95, 205418, 2021. https://doi.org/10.1016/j.ijrmhm.2020.105418.
  • Elias-Espinosa M., Ortiz-Domínguez M., Keddam M., Gómez-Vargas O. A., Arenas-Flores A., Barrientos-Hernández F. R., West A. R., Sinclair D. C., Boriding kinetics and mechanical behaviour of AISI O1 steel. Surface Engineering 31(8), 588-597, 2015. https://doi.org/10.1179/1743294415Y.0000000065.
  • Fang Z. Z., Paramore J. D., Sun P., Chandran K. S. R., Zhang Y., Xia Y., Cao F., Koopman M., Free M., Powder metallurgy of titanium–past, present, and future. International Materials Reviews 63(7), 407-459, 2018. https://doi.org/10.1080/09506608.2017.1366003.
  • Gao Z., Wang L., Wang Y., Lyu F., Zhan X., Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. Journal of Alloys and Compounds 903, 163905, 2022. https://doi.org/10.1016/j.jallcom.2022.163905.
  • Gill N., Sharma A. L., Gupta V., Tomar M., Pandey O. P., Singh D. P., Enhanced Microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. Journal of Alloys and Compounds, 797, 1190-1197, 2019. https://doi.org/10.1016/j.jallcom.2019.05.176.
  • Küçükilhan M., Mertgenç E., Çolak F., The effect of powder-pack aluminising on the corrosion performance of FeCoGx low entropy. International Journal of Surface Science and Engineering 18(3), 229-244, 2024. https://doi.org/10.1504/IJSURFSE.2024.141505.
  • Kulka M., Makuch N., Piasecki A., Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surface and Coatings Technology, 325, 515-532, 2017. https://doi.org/10.1016/j.surfcoat.2017.07.020.
  • Li Y., Yang Z., Ma Z., Bai Y., Wu C., Li J., Effect of element V on the as-cast microstructure and mechanical properties of Al0.4Co0.5VxFeNi high entropy alloys. Journal of Alloys and Compounds 911, 165043, 2022. https://doi.org/10.1016/j.jallcom.2022.165043.
  • Liang L., Wu J., Wang B., Kong C., Pervikov A., Shi H., Li X., Microstructure and electromagnetic wave absorption properties of FeCo/graphene composites prepared by electrical wire explosion method. Applied Surface Science 681, 161577, 2025. https://doi.org/10.1016/j.apsusc.2024.161577.
  • Mani M. K., Viola G., Reece M. J., Hall J. P., Evans S. L., Influence of coated SiC particulates on the mechanical and magnetic behaviour of Fe-Co alloy composites. Journal of Materials Science 49(6), 2578-2587, 2014. https://doi.org/10.1007/s10853-013-7954-9.
  • Mertgenç E., Kayali Y., Diffusion kinetics and boronizing of high entropy alloy produced by TIG melting reverse suction method. Canadian Metallurgical Quarterly 62(2), 362-371, 2022. https://doi.org/10.1080/00084433.2022.2082203.
  • Michalak M., Sokołowski P., Szala M., Walczak M., Łatka L., Toma F. L., Björklund S., Wear behavior analysis of Al2O3 coatings manufactured by APS and HVOF spraying processes using powder and suspension feedstocks. Coatings 11(8), 879, 2021. https://doi.org/10.3390/coatings11080879.
  • Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang, H., Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing. Lubricants 8(3), 26, 2020. https://doi.org/10.3390/lubricants8030026.
  • Padgurskas J., Kreivaitis R., Rukuiža R., Mihailov V., Agafii V., Kriūkienė R., Baltušnikas A., Tribological properties of coatings obtained by electro-spark alloying C45 steel surfaces. Surface and Coatings Technology 311, 90-97, 2017. https://doi.org/10.1016/j.surfcoat.2016.12.098.
  • Pulido-González N., García-Rodríguez S., Campo M., Rams J., Torres B., Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings. Journal of Thermal Spray Technology 29(3), 384-399, 2020. https://doi.org/10.1007/s11666-020-00989-9.
  • Riquelme A., Rodrigo P., An introduction on the laser cladding coatings on magnesium alloys. Metals 11(12), 1993, 2021. https://doi.org/10.3390/met11121993.
  • Rodríguez-Castro G. A., Reséndiz-Calderon C. D., Jiménez-Tinoco L. F., Meneses-Amador A., Gallardo-Hernández E. A., Campos-Silva I. E., Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surface and Coatings Technology 284, 258-263, 2015. https://doi.org/10.1016/j.surfcoat.2015.06.081.
  • Tan Z. Q., Engström U., Li K., Liu Y., Effect of furnace atmosphere on sintering process of chromium-containing steel via powder metallurgy. Journal of Iron and Steel Research International 28(7), 889-900, 2021. https://doi.org/10.1007/s42243-020-00549-z.
  • Wang L., Zhang F., Yan S., Yu G., Chen J., He J., Yin F., Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing. Journal of Alloys and Compounds 872, 159607, 2021. https://doi.org/10.1016/j.jallcom.2021.159607.
  • Yu R. H., Basu S., Zhang Y., Xiao J. Q., Magnetic domains and coercivity in FeCo soft magnetic alloys. Journal of Applied Physics 85, 6034-6036, 1999. https://doi.org/10.1063/1.369073.
  • Zhang R., Lv K., Du Z., Chen W., Ji P., Wang M., Effects of Graphene on the Wear and Corrosion Resistance of Micro-Arc Oxidation Coating on a Titanium Alloy. Metals 12(1),70, 2022. https://doi.org/10.3390/met12010070.
  • Zhu Z. X., Liu X. B., Liu Y. F., Zhang S. Y., Meng Y., Zhou H. B., Zhang S. H., Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding. Wear 512-513, 204533, 2023. https://doi.org/10.1016/j.wear.2022.204533.

Farklı yöntemlerle üretilen orta entropili alaşımlarda grafen takviyesinin borlamaya etkisi

Year 2024, Volume: 5 Issue: 2, 341 - 353, 20.12.2024
https://doi.org/10.55546/jmm.1576256

Abstract

Gelişen teknoloji ile beraber geleneksel malzemelerin endüstrinin ihtiyaçlarını karşılamada yetersiz kalması ile yeni malzeme üretimi ve geliştirilmesi üzerine yapılan çalışmalar yoğunluk kazanmaktadır. Geleneksel çeliklere alternatif olarakta düşük, orta ve yüksek entropili alaşımlar ve nano malzemelerin kullanımı son dönemde en uygun çözümler arasında yer almaktadır. Bu çözümlerden hareketle, bu çalışmada farklı yöntemlerle üretilen, yumuşak manyetik alaşım olarak nitelendirilen FeCo alaşımına, nano partiküllü takviye malzemesinin kutu borlamada borür tabaka yapısına olan etkisi araştırılmıştır. Öncelikle, %2 ve %4 oranlarında grafen takviye edilmiş, orta entropili FeCo alaşımı, ergitme döküm ve toz metalurji yöntemleri olmak üzere 2 farklı yöntemle üretilmiştir. Daha sonra, 2 farklı yöntemlede üretilen MEA’lar 1073 K sıcaklık ve 2 saat süre ile kutu borlama işlemine tabi tutulmuştur. Hem üretilen MEA’larla beraber hemde borlanan MEA’ların borür tabakaları karakterize edilmiştir. Ergitme döküm yöntemi ile üretilen alaşımların mikroyapısı çoklu faz yapısına sahipken, toz metalurjisi ile üretilen alaşımlarda tekli faz yapısı hakimdir. Grafen takviyesinin artışı ile ergitme döküm yöntemi kullanılan alaşımlarda dentritik yapı eğilimi artmakta iken, toz metalurjisi kullanılan alaşımlarda ise çatlak oluşumunda artış olmaktadır. Her iki yöntemlede üretilen alaşımların XRD desen analizine göre, alaşımların ana piklerinde CoFe fazına ait pikler tespit edilmiştir. Alaşımların mikrosertliği 258 HV0.05 ile 314 HV0.05 arasında değimektedir. Kutu borlama ile elde edilen borür tabaka yapılarında geçiş bölgesi oluşmamış, kolonsol şekilde ve testere dişi görünümündedir. Borür tabaka kalınlıkları ise 22 µm ile 34 µm arasında değimektedir. Her iki yöntemlede üretilerek borlanan alaşımların, borür tabaka yüzeylerinden yapılan XRD desen analizine göre, ana piklerde FeB, Fe2B, CoFe fazları tespit edilirken, ergitme döküm yöntemi ile üretilen alaşımlarda ayrıca Co2Fe fazıda mevcuttur. Borlanan alaşımların borür tabakalarının yüzey mikrosertlikleri ise 1922 HV0.05 ile 2124 HV0.05 aralığında değişmektedir.

Ethical Statement

--

Supporting Institution

AFYON KOCATEPE ÜNİVERSİTESİ

Project Number

22.FEN.BİL.26

Thanks

Afyon Kocatepe Üniversitesi Bilimsel Araştırma Projeleri Birimi

References

  • Albaaji A. J., Castle E. G., Reece M. J., Hall J. P., Evans S. L., Effect of ball-milling time on mechanical and magnetic properties of carbon nanotube reinforced FeCo alloy composites. Materials and Design 122, 296-306, 2017. https://doi.org/10.1016/j.matdes.2017.02.091.
  • Allaedini G., Tasirin S. M., Aminayi P., Magnetic properties of cobalt ferrite synthesized by hydrothermal method. International Nano Letters 5(4), 183-186, 2015. https://doi.org/10.1007/s40089-015-0153-8.
  • Alkan S., Effect of Boron-Aluminide Coating Applied on R4 Grade Offshore Mooring Chain Steel on Pitting and Tribo-Corrosion Behaviour. Journal of Materials and Mechatronics: A 4(1), 302-317, 2023. https://doi.org/10.55546/jmm.1296633.
  • Bölükbaşı Ö. S., Serindağ T., Gürol U., Günen A., Çam G., Improving oxidation resistance of wire arc additive manufactured Inconel 625 Ni-based superalloy by pack aluminizing. CIRP Journal of Manufacturing Science and Technology 46, 89-97, 2023. https://doi.org/10.1016/j.cirpj.2023.07.011.
  • Campos-Silva I., Bravo-Bárcenas D., Meneses-Amador A., Ortiz-Dominguez M., Cimenoglu H., Figueroa-López U., Andraca-Adame J., Growth kinetics and mechanical properties of boride layers formed at the surface of the ASTM F-75 biomedical alloy. Surface and Coatings Technology 237, 402-414, 2013. https://doi.org/10.1016/j.surfcoat.2013.06.083.
  • Cengiz S., Effect of refractory elements on boronizing properties of the CoCrFeNi high entropy alloy. International Journal of Refractory Metals and Hard Materials, 95, 205418, 2021. https://doi.org/10.1016/j.ijrmhm.2020.105418.
  • Elias-Espinosa M., Ortiz-Domínguez M., Keddam M., Gómez-Vargas O. A., Arenas-Flores A., Barrientos-Hernández F. R., West A. R., Sinclair D. C., Boriding kinetics and mechanical behaviour of AISI O1 steel. Surface Engineering 31(8), 588-597, 2015. https://doi.org/10.1179/1743294415Y.0000000065.
  • Fang Z. Z., Paramore J. D., Sun P., Chandran K. S. R., Zhang Y., Xia Y., Cao F., Koopman M., Free M., Powder metallurgy of titanium–past, present, and future. International Materials Reviews 63(7), 407-459, 2018. https://doi.org/10.1080/09506608.2017.1366003.
  • Gao Z., Wang L., Wang Y., Lyu F., Zhan X., Crack defects and formation mechanism of FeCoCrNi high entropy alloy coating on TC4 titanium alloy prepared by laser cladding. Journal of Alloys and Compounds 903, 163905, 2022. https://doi.org/10.1016/j.jallcom.2022.163905.
  • Gill N., Sharma A. L., Gupta V., Tomar M., Pandey O. P., Singh D. P., Enhanced Microwave absorption and suppressed reflection of polypyrrole-cobalt ferrite-graphene nanocomposite in X-band. Journal of Alloys and Compounds, 797, 1190-1197, 2019. https://doi.org/10.1016/j.jallcom.2019.05.176.
  • Küçükilhan M., Mertgenç E., Çolak F., The effect of powder-pack aluminising on the corrosion performance of FeCoGx low entropy. International Journal of Surface Science and Engineering 18(3), 229-244, 2024. https://doi.org/10.1504/IJSURFSE.2024.141505.
  • Kulka M., Makuch N., Piasecki A., Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surface and Coatings Technology, 325, 515-532, 2017. https://doi.org/10.1016/j.surfcoat.2017.07.020.
  • Li Y., Yang Z., Ma Z., Bai Y., Wu C., Li J., Effect of element V on the as-cast microstructure and mechanical properties of Al0.4Co0.5VxFeNi high entropy alloys. Journal of Alloys and Compounds 911, 165043, 2022. https://doi.org/10.1016/j.jallcom.2022.165043.
  • Liang L., Wu J., Wang B., Kong C., Pervikov A., Shi H., Li X., Microstructure and electromagnetic wave absorption properties of FeCo/graphene composites prepared by electrical wire explosion method. Applied Surface Science 681, 161577, 2025. https://doi.org/10.1016/j.apsusc.2024.161577.
  • Mani M. K., Viola G., Reece M. J., Hall J. P., Evans S. L., Influence of coated SiC particulates on the mechanical and magnetic behaviour of Fe-Co alloy composites. Journal of Materials Science 49(6), 2578-2587, 2014. https://doi.org/10.1007/s10853-013-7954-9.
  • Mertgenç E., Kayali Y., Diffusion kinetics and boronizing of high entropy alloy produced by TIG melting reverse suction method. Canadian Metallurgical Quarterly 62(2), 362-371, 2022. https://doi.org/10.1080/00084433.2022.2082203.
  • Michalak M., Sokołowski P., Szala M., Walczak M., Łatka L., Toma F. L., Björklund S., Wear behavior analysis of Al2O3 coatings manufactured by APS and HVOF spraying processes using powder and suspension feedstocks. Coatings 11(8), 879, 2021. https://doi.org/10.3390/coatings11080879.
  • Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang, H., Microstructure and wear behavior of tungsten hot-work steel after boriding and boroaluminizing. Lubricants 8(3), 26, 2020. https://doi.org/10.3390/lubricants8030026.
  • Padgurskas J., Kreivaitis R., Rukuiža R., Mihailov V., Agafii V., Kriūkienė R., Baltušnikas A., Tribological properties of coatings obtained by electro-spark alloying C45 steel surfaces. Surface and Coatings Technology 311, 90-97, 2017. https://doi.org/10.1016/j.surfcoat.2016.12.098.
  • Pulido-González N., García-Rodríguez S., Campo M., Rams J., Torres B., Application of DOE and ANOVA in Optimization of HVOF Spraying Parameters in the Development of New Ti Coatings. Journal of Thermal Spray Technology 29(3), 384-399, 2020. https://doi.org/10.1007/s11666-020-00989-9.
  • Riquelme A., Rodrigo P., An introduction on the laser cladding coatings on magnesium alloys. Metals 11(12), 1993, 2021. https://doi.org/10.3390/met11121993.
  • Rodríguez-Castro G. A., Reséndiz-Calderon C. D., Jiménez-Tinoco L. F., Meneses-Amador A., Gallardo-Hernández E. A., Campos-Silva I. E., Micro-abrasive wear resistance of CoB/Co2B coatings formed in CoCrMo alloy. Surface and Coatings Technology 284, 258-263, 2015. https://doi.org/10.1016/j.surfcoat.2015.06.081.
  • Tan Z. Q., Engström U., Li K., Liu Y., Effect of furnace atmosphere on sintering process of chromium-containing steel via powder metallurgy. Journal of Iron and Steel Research International 28(7), 889-900, 2021. https://doi.org/10.1007/s42243-020-00549-z.
  • Wang L., Zhang F., Yan S., Yu G., Chen J., He J., Yin F., Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing. Journal of Alloys and Compounds 872, 159607, 2021. https://doi.org/10.1016/j.jallcom.2021.159607.
  • Yu R. H., Basu S., Zhang Y., Xiao J. Q., Magnetic domains and coercivity in FeCo soft magnetic alloys. Journal of Applied Physics 85, 6034-6036, 1999. https://doi.org/10.1063/1.369073.
  • Zhang R., Lv K., Du Z., Chen W., Ji P., Wang M., Effects of Graphene on the Wear and Corrosion Resistance of Micro-Arc Oxidation Coating on a Titanium Alloy. Metals 12(1),70, 2022. https://doi.org/10.3390/met12010070.
  • Zhu Z. X., Liu X. B., Liu Y. F., Zhang S. Y., Meng Y., Zhou H. B., Zhang S. H., Effects of Cu/Si on the microstructure and tribological properties of FeCoCrNi high entropy alloy coating by laser cladding. Wear 512-513, 204533, 2023. https://doi.org/10.1016/j.wear.2022.204533.
There are 27 citations in total.

Details

Primary Language English
Subjects Metals and Alloy Materials
Journal Section Research Articles
Authors

Nazmiye Nur Küçükelçi 0000-0003-4937-6626

Ersan Mertgenç 0000-0001-8247-2922

Rıza Kara 0000-0002-0820-2577

Project Number 22.FEN.BİL.26
Publication Date December 20, 2024
Submission Date October 30, 2024
Acceptance Date December 3, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Küçükelçi, N. N., Mertgenç, E., & Kara, R. (2024). Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods. Journal of Materials and Mechatronics: A, 5(2), 341-353. https://doi.org/10.55546/jmm.1576256
AMA Küçükelçi NN, Mertgenç E, Kara R. Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods. J. Mater. Mechat. A. December 2024;5(2):341-353. doi:10.55546/jmm.1576256
Chicago Küçükelçi, Nazmiye Nur, Ersan Mertgenç, and Rıza Kara. “Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods”. Journal of Materials and Mechatronics: A 5, no. 2 (December 2024): 341-53. https://doi.org/10.55546/jmm.1576256.
EndNote Küçükelçi NN, Mertgenç E, Kara R (December 1, 2024) Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods. Journal of Materials and Mechatronics: A 5 2 341–353.
IEEE N. N. Küçükelçi, E. Mertgenç, and R. Kara, “Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods”, J. Mater. Mechat. A, vol. 5, no. 2, pp. 341–353, 2024, doi: 10.55546/jmm.1576256.
ISNAD Küçükelçi, Nazmiye Nur et al. “Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods”. Journal of Materials and Mechatronics: A 5/2 (December 2024), 341-353. https://doi.org/10.55546/jmm.1576256.
JAMA Küçükelçi NN, Mertgenç E, Kara R. Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods. J. Mater. Mechat. A. 2024;5:341–353.
MLA Küçükelçi, Nazmiye Nur et al. “Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods”. Journal of Materials and Mechatronics: A, vol. 5, no. 2, 2024, pp. 341-53, doi:10.55546/jmm.1576256.
Vancouver Küçükelçi NN, Mertgenç E, Kara R. Effect of Graphene Reinforcement on Boronization in Medium Entropy Alloys Produced by Different Methods. J. Mater. Mechat. A. 2024;5(2):341-53.