The Form of the Solutions of System of Rational Difference Equation
Year 2018,
Volume: 1 Issue: 3, 181 - 191, 30.12.2018
Marwa M. Alzubaidi
,
E. M. Elsayed
Abstract
In this article, we study the form of the solutions of the system of difference equations $x_{n+1}=((y_{n-8})/(1+y_{n-2}x_{n-5}y_{n-8}))$, $y_{n+1}=((x_{n-8})/(\pm1\pm x_{n-2}y_{n-5}x_{n-8}))$, with the initial conditions are real numbers. Also, we give the numerical examples of some of difference equations and got some related graphs and figures using by Matlab.
References
- [1] A. M. Ahmed, E. M. Elsayed, The expressions of solutions and the periodicity of some rational difference equations system, J. Appl. Math. Inform.
34(1-2) (2016), 35–48.
- [2] M. M. El-Dessoky, The form of solutions and periodicity for some systems of third-order rational difference equations, Math. Meth. Appl. Sci., 39
(2016), 1076–1092.
- [3] M. M. El-Dessoky, E. M. Elsayed, On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl., 18(2)
(2015), 206–218.
- [4] M. M. El-Dessoky, A. Khaliq, A. Asiri, On some rational system of difference equations, J. Nonlinear Sci. Appl., 11 (2018), 49–72.
- [5] E. M. Elsayed, T. F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational difference equations, Hacettepe Journal of Mathematics
and Statistics, 44 (6) (2015), 1361–1390.
- [6] E. M. Elsayed, A. Alghamdi, The form of the solutions of nonlinear difference equations systems, J. Nonlinear Sci. Appl., 9 (2016), 3179–3196.
- [7] N. Haddad , N. Touafek, J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case,
Math. Methods Appl. Sci., 40 (2017), 3599–3607.
- [8] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$; $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1)$, World
Appl. Sci. J., 10(11) (2010), 1344-1350.
- [9] A. S. Kurbanli, C. C¸ inar, D. S¸ims¸ek, On the periodicity of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}+y_{n}/(y_{n}x_{n-1}-1),$;
$y_{n+1}=y_{n-1}+x_{n}/(x_{n}y_{n-1}-1)$, Appl. Math., 2 (2011), 410-413.
- [10] A. S. Kurbanli, C. C¸ inar, I. Yalc¸inkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}+1),$;
$y_{n+1}=y_{n-1}/(x_{n}y_{n-1}+1)$, Math. Comput. Modelling, 53 (2011), 1261–1267.
- [11] M. Mansour, M. M. El-Dessoky, E. M. Elsayed, The form of the solutions and periodicity of some systems of difference equations, Discrete Dyn. Nat.
Soc., 2012 (2012), Article ID 406821, 1-17.
- [12] N. Touafek and E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling, 55 (2012), 1987-1997.
- [13] S. A. Abramov, D. E. Khmelnov, Denominators of rational solutions of linear difference systems of an arbitrary order, Program. Comput. Softw., 38 (2)
(2012), 84–91.
- [14] R. Abu-Saris, C. Cinar, I. Yalcinkaya, On the Asymptotic Stability of $x_{n+1}=a+x_{n}x_{n-k}/x_{n}+x_{n-k},$; Comput. Math. Appl., 56(5) (2008), 1172-1175.
- [15] N. Battaloglu, C. Cinar, I. Yalcinkaya, The dynamics of the difference equation $x_{n+1}=(\alpha x_{n-m})/(\beta+\gamma
x_{n-(k+1)}^{p}),\ $; , Ars Combin., 97 (2010), 281–288.
- [16] O. H. Criner, W. E. Taylor, J. L. Williams, On the solutions of a system of nonlinear difference equations, Int. J. Difference Equ., 10(2) (2015), 161–166.
- [17] I. Dekkar, N. Touafek, Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Rev. R. Acad.
Cienc. Exactas F´ıs. Nat. Ser. A Mat., 111(2) (2017), 325–347.
- [18] Q. Din, Qualitative nature of a discrete predator-prey system, Contem. Methods Math. Phys. Grav., 1 (2015), 27-42.
- [19] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Some properties and expressions of solutions for a class of nonlinear difference equation, Util. Math.,
87 (2012), 93–110.
- [20] E. M. Elabbasy, S. M. Eleissawy, Periodicty and stability of solutions of rational difference systems, Appl. Comput. Math., 1(4) (2012), 1-6.
- [21] E. M. Elabbasy, A. A. Elsadany, S. Ibrahim, Behavior and periodic solutions of a two-dimensional systems of rational difference equations, J. Interpolat.
Approx. Sci. Comput., 2016(2) (2016), 87-104.
- [22] M. M. El-Dessoky, Solution for rational systems of difference equations of order three, Mathematics, 4(3) (2016), 1-12.
- [23] M. M. El-Dessoky, E. M. Elsayed, E. O. Alzahrani, The form of solutions and periodic nature for some rational difference equations systems, J.
Nonlinear Sci. Appl., 9 (2016), 5629-5647.
- [24] E. M. Elsayed, Dynamics of recursive sequence of order two, Kyungpook Math. J., 50(4) (2010), 483-497.
- [25] E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011), Article ID 982309, 17 pages.
- [26] E. M. Elsayed, On the dynamics of a higher-order rational recursive sequence, Commun. Math. Anal., 12(1) (2012), 117–133.
- [27] E. M. Elsayed, M. M. El-Dessoky, A. Alotaibi, On the solutions of a general system of difference equations, Discrete Dyn. Nat. Soc., 2012 (2012),
Article ID 892571, 12 pages.
- [28] M. Gumus, O. Ocalan, The qualitative analysis of a rational system of difference equations, J. Fract. Calc. Appl., 9(2) (2018), 113-126.
- [29] N. Haddad, N. Touafek, E. M. Elsayed, A note on a system of difference equations, Analele Stiintifice ale universitatii al i cuza din iasi serie noua
matematica, LXIII(3) (2017), 599-606.
- [30] N. Haddad, N. Touafek, J. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (1-2) (2018), 439–458.
- [31] Y. Halim, N. Touafek, Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39 (2015), 1004-1018.
- [32] Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers, Int. J. Difference Equ., 11(1) (2016), 65–77.
- [33] G. Hu, Global behavior of a system of two nonlinear difference equation, World J. Res. Rev., 2(6) (2016), 36-38.
- [34] W. Ji, D. Zhang, L. Wang, Dynamics and behaviors of a third-order system of difference equation, Math. Sci., 7(34) (2013), 1-6.
- [35] A. Khaliq, E. M. Elsayed, The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., 9 (2016), 1052-1063.
- [36] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$%
\emph{\ }$y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1),$; $z_{n+1}=1/y_{n}z_{n},$; Adv. Difference Equ., 2011 (2011), 40.
- [37] A. S. Kurbanli, C. C¸ inar, M. E. Erdogan, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$ \, $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1),
$\, $z_{n+1}=x_{n}/(y_{n}z_{n-1}),$; Appl. Math., 2 (2011), 1031-1038.
- [38] A. S. Kurbanli, I. Yalcinkaya, A. Gelisken, On the behavior of the Solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$ $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1), $\emph{\ }$z_{n+1}=x_{n}z_{n-1}/y_{n},$; Int. J. Phys. Sci., 8(2) (2013), 51-56.
- [39] D. Simsek, B. Demir,C. Cinar, On the solutions of the system of difference equations $x_{n+1}=\max\left\{ \frac{1}{x_{n}},\frac{y_{n}}{x_{n}}\right\} ,$ $y_{n+1}=\max\left\{ \frac{1}{y_{n}},\frac{x_{n}}{y_{n}}\right\} ,$; Discrete Dyn. Nat.Soc., 2009 (2009), Article ID 325296, 11 pages.
- [40] J. L. Williams, On a class of nonlinear max-type difference equations, Cogent Math., 3 (2016), 1269597, 1-11.
- [41] I. Yalcinkaya, C. Cinar, On the solutions of a systems of difference equations, Int. J. Math. Stat., 9 (S11) (2011), 62–67.
- [42] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4 (2013), 15-20.
- [43] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a max-type difference equation system, Math. Meth. Appl. Sci., 38 (2015), 4388–4410.
- [44] Q. Zhang, J. Liu, Z. Luo, Dynamical behavior of a system of third-order rational difference equation, Discrete Dyn. Nat. Soc., 2015 (2015), Article ID
530453, 6 pages.
Year 2018,
Volume: 1 Issue: 3, 181 - 191, 30.12.2018
Marwa M. Alzubaidi
,
E. M. Elsayed
References
- [1] A. M. Ahmed, E. M. Elsayed, The expressions of solutions and the periodicity of some rational difference equations system, J. Appl. Math. Inform.
34(1-2) (2016), 35–48.
- [2] M. M. El-Dessoky, The form of solutions and periodicity for some systems of third-order rational difference equations, Math. Meth. Appl. Sci., 39
(2016), 1076–1092.
- [3] M. M. El-Dessoky, E. M. Elsayed, On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl., 18(2)
(2015), 206–218.
- [4] M. M. El-Dessoky, A. Khaliq, A. Asiri, On some rational system of difference equations, J. Nonlinear Sci. Appl., 11 (2018), 49–72.
- [5] E. M. Elsayed, T. F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational difference equations, Hacettepe Journal of Mathematics
and Statistics, 44 (6) (2015), 1361–1390.
- [6] E. M. Elsayed, A. Alghamdi, The form of the solutions of nonlinear difference equations systems, J. Nonlinear Sci. Appl., 9 (2016), 3179–3196.
- [7] N. Haddad , N. Touafek, J. F. T. Rabago, Solution form of a higher-order system of difference equations and dynamical behavior of its special case,
Math. Methods Appl. Sci., 40 (2017), 3599–3607.
- [8] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$; $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1)$, World
Appl. Sci. J., 10(11) (2010), 1344-1350.
- [9] A. S. Kurbanli, C. C¸ inar, D. S¸ims¸ek, On the periodicity of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}+y_{n}/(y_{n}x_{n-1}-1),$;
$y_{n+1}=y_{n-1}+x_{n}/(x_{n}y_{n-1}-1)$, Appl. Math., 2 (2011), 410-413.
- [10] A. S. Kurbanli, C. C¸ inar, I. Yalc¸inkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}+1),$;
$y_{n+1}=y_{n-1}/(x_{n}y_{n-1}+1)$, Math. Comput. Modelling, 53 (2011), 1261–1267.
- [11] M. Mansour, M. M. El-Dessoky, E. M. Elsayed, The form of the solutions and periodicity of some systems of difference equations, Discrete Dyn. Nat.
Soc., 2012 (2012), Article ID 406821, 1-17.
- [12] N. Touafek and E. M. Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling, 55 (2012), 1987-1997.
- [13] S. A. Abramov, D. E. Khmelnov, Denominators of rational solutions of linear difference systems of an arbitrary order, Program. Comput. Softw., 38 (2)
(2012), 84–91.
- [14] R. Abu-Saris, C. Cinar, I. Yalcinkaya, On the Asymptotic Stability of $x_{n+1}=a+x_{n}x_{n-k}/x_{n}+x_{n-k},$; Comput. Math. Appl., 56(5) (2008), 1172-1175.
- [15] N. Battaloglu, C. Cinar, I. Yalcinkaya, The dynamics of the difference equation $x_{n+1}=(\alpha x_{n-m})/(\beta+\gamma
x_{n-(k+1)}^{p}),\ $; , Ars Combin., 97 (2010), 281–288.
- [16] O. H. Criner, W. E. Taylor, J. L. Williams, On the solutions of a system of nonlinear difference equations, Int. J. Difference Equ., 10(2) (2015), 161–166.
- [17] I. Dekkar, N. Touafek, Y. Yazlik, Global stability of a third-order nonlinear system of difference equations with period-two coefficients, Rev. R. Acad.
Cienc. Exactas F´ıs. Nat. Ser. A Mat., 111(2) (2017), 325–347.
- [18] Q. Din, Qualitative nature of a discrete predator-prey system, Contem. Methods Math. Phys. Grav., 1 (2015), 27-42.
- [19] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Some properties and expressions of solutions for a class of nonlinear difference equation, Util. Math.,
87 (2012), 93–110.
- [20] E. M. Elabbasy, S. M. Eleissawy, Periodicty and stability of solutions of rational difference systems, Appl. Comput. Math., 1(4) (2012), 1-6.
- [21] E. M. Elabbasy, A. A. Elsadany, S. Ibrahim, Behavior and periodic solutions of a two-dimensional systems of rational difference equations, J. Interpolat.
Approx. Sci. Comput., 2016(2) (2016), 87-104.
- [22] M. M. El-Dessoky, Solution for rational systems of difference equations of order three, Mathematics, 4(3) (2016), 1-12.
- [23] M. M. El-Dessoky, E. M. Elsayed, E. O. Alzahrani, The form of solutions and periodic nature for some rational difference equations systems, J.
Nonlinear Sci. Appl., 9 (2016), 5629-5647.
- [24] E. M. Elsayed, Dynamics of recursive sequence of order two, Kyungpook Math. J., 50(4) (2010), 483-497.
- [25] E. M. Elsayed, Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., 2011 (2011), Article ID 982309, 17 pages.
- [26] E. M. Elsayed, On the dynamics of a higher-order rational recursive sequence, Commun. Math. Anal., 12(1) (2012), 117–133.
- [27] E. M. Elsayed, M. M. El-Dessoky, A. Alotaibi, On the solutions of a general system of difference equations, Discrete Dyn. Nat. Soc., 2012 (2012),
Article ID 892571, 12 pages.
- [28] M. Gumus, O. Ocalan, The qualitative analysis of a rational system of difference equations, J. Fract. Calc. Appl., 9(2) (2018), 113-126.
- [29] N. Haddad, N. Touafek, E. M. Elsayed, A note on a system of difference equations, Analele Stiintifice ale universitatii al i cuza din iasi serie noua
matematica, LXIII(3) (2017), 599-606.
- [30] N. Haddad, N. Touafek, J. T. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (1-2) (2018), 439–458.
- [31] Y. Halim, N. Touafek, Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39 (2015), 1004-1018.
- [32] Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers, Int. J. Difference Equ., 11(1) (2016), 65–77.
- [33] G. Hu, Global behavior of a system of two nonlinear difference equation, World J. Res. Rev., 2(6) (2016), 36-38.
- [34] W. Ji, D. Zhang, L. Wang, Dynamics and behaviors of a third-order system of difference equation, Math. Sci., 7(34) (2013), 1-6.
- [35] A. Khaliq, E. M. Elsayed, The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., 9 (2016), 1052-1063.
- [36] A. S. Kurbanli, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$%
\emph{\ }$y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1),$; $z_{n+1}=1/y_{n}z_{n},$; Adv. Difference Equ., 2011 (2011), 40.
- [37] A. S. Kurbanli, C. C¸ inar, M. E. Erdogan, On the behavior of solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$ \, $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1),
$\, $z_{n+1}=x_{n}/(y_{n}z_{n-1}),$; Appl. Math., 2 (2011), 1031-1038.
- [38] A. S. Kurbanli, I. Yalcinkaya, A. Gelisken, On the behavior of the Solutions of the system of rational difference equations $x_{n+1}=x_{n-1}/(y_{n}x_{n-1}-1),$ $y_{n+1}=y_{n-1}/(x_{n}y_{n-1}-1), $\emph{\ }$z_{n+1}=x_{n}z_{n-1}/y_{n},$; Int. J. Phys. Sci., 8(2) (2013), 51-56.
- [39] D. Simsek, B. Demir,C. Cinar, On the solutions of the system of difference equations $x_{n+1}=\max\left\{ \frac{1}{x_{n}},\frac{y_{n}}{x_{n}}\right\} ,$ $y_{n+1}=\max\left\{ \frac{1}{y_{n}},\frac{x_{n}}{y_{n}}\right\} ,$; Discrete Dyn. Nat.Soc., 2009 (2009), Article ID 325296, 11 pages.
- [40] J. L. Williams, On a class of nonlinear max-type difference equations, Cogent Math., 3 (2016), 1269597, 1-11.
- [41] I. Yalcinkaya, C. Cinar, On the solutions of a systems of difference equations, Int. J. Math. Stat., 9 (S11) (2011), 62–67.
- [42] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., 4 (2013), 15-20.
- [43] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a max-type difference equation system, Math. Meth. Appl. Sci., 38 (2015), 4388–4410.
- [44] Q. Zhang, J. Liu, Z. Luo, Dynamical behavior of a system of third-order rational difference equation, Discrete Dyn. Nat. Soc., 2015 (2015), Article ID
530453, 6 pages.