Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 30 - 38, 20.04.2019
https://doi.org/10.33187/jmsm.432678

Abstract

References

  • [1] R. B. Agarwal, D. O’Regan, P. J. Wang, Positive solutions of differential, Difference, and integral equations, Kluwer Academic, Boston, Ma, 1999.
  • [2] D. R. Anderson, R. I. Avery, A fourth-order four-point right focal boundary value problem, Rocky Mountain J. Math., 36 (2006), 367-380.
  • [3] N. Bouteraa, S. Benaicha, Triple positive solutions of higher-order nonlinear boundary value problems, J. Comput. Sci. Comput. Math., 7 (2017), 25–31.
  • [4] N. Bouteraa, S. Benaicha, Nonlinear boundary value problems for higher-order ordinary differential equation at resonance, Romanian J. Math. Comput. Sci., 2 (2018), 83–91.
  • [5] N. Bouteraa, S. Benaicha, Existence of solutions for third-order three-point boundary value problem, Mathematica, 60(83) (2018), 12–22.
  • [6] A. Cabada, S. Heikkila, Uniqueness, comparison and existence results for third-order functional initial-boundary value problems, Comput. Math. Appl., 41 (2001), 607–618.
  • [7] A. Cabada, S. Tersian, Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 2014, 2014:105.
  • [8] J. Davis, J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundary value problems, Panamer. Math. J., 8 (1998), 23–35.
  • [9] H. Djourdem, S. Benaicha, Existence of positive solutions for a nonlinear three-point boundary value problem with integral boundary conditions, Acta Math. Univ. Comenianae, 87 (2018), 167–177.
  • [10] L. H. Erbe, H. Wang, On -the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) 743–748.
  • [11] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation, Appl. Anal., 26 (1988), 289–304.
  • [12] G. Infante, P. Pientramala, A cantilever equation witht nonlinear boundary conditions, Electron. J. Qual. Theory Differe. Equ., Spec. Ed. I., 15 (2009), 1–14.
  • [13] R. Ma, L. Xu, Existence of positive solutions for a nonlinear fourth-order boundary value problem, Appl. Math. Lett. 23 (2010), 537–543.
  • [14] Y. Sun, C. Zhu, Existence of positive solutions for singular fourth-order three-point boundary value problems, Adv. Differ. Equ., 2013, 2013:51. doi:10.1186-1847-2013-51.
  • [15] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415–426.
  • [16] E. Alves, T.F.Ma., M.L. Policer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions value, Nonlinear Anal. 71 (2009), 3834–3841.
  • [17] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation at resonance, J. Math. Anal Appl. 135 (1988), 208–225.
  • [18] R. Ma, B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sin. Engl. Ser. 24 (2008), 27–34.
  • [19] Q. Yao, Local existence of multiple positive solutions to a singular cantiliver beam equation, J. Math. Anal. Appl. 363 (2010), 138–154.
  • [20] N. Bouteraa, S. Benaicha, Positive periodic solutions for a class of fourth-order nonlinear differential equations, Numerical Analysis and Applications., 22(1) (2019), 1–14.
  • [21] N. Bouteraa, S. Benaicha, H. Djourdem, M.E. Benattia, Positive solutions for fourth-order two-point boundary value problem with a parameter, Romanian J. Math. Comput. Sci., 8 (2018), 17–30.
  • [22] H. Djourdem, S. Benaicha, N. Bouteraa, Existence and iteration of monotone positive solution for a fourth-order nonlinear boundary value problem, Fundam. J. Math. Appl., 1 (2018), 205–211.
  • [23] L. Hu, L. L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equation, J. Math. Anal. Appl., 355 (2007), 1052–1060.
  • [24] B. Liu, L. Liu, Y. Wu, Positive solutions for singular systems of three-point boundary value problems, Computers Math. Appl., 53 (2007), 1429–1438.
  • [25] Y. Zhou, Y. Xu, Positive solutions of three boundary value problems for systems of nonlinear second order ordinary differential equation, J. Math. Anal. Appl., 320 (2006), 578–590.
  • [26] M. A. Krasnosel’skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.

Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter

Year 2019, Volume: 2 Issue: 1, 30 - 38, 20.04.2019
https://doi.org/10.33187/jmsm.432678

Abstract

This paper deals with the existence of positive solutions for a system of nonlinear singular fourth-order differential equations with a parameter $\lambda$ subject two-point boundary conditions. Our analysis relies on the Krasnoselskii fixed point theorem and under suitable conditions, we derive explicit eigenvalue intervals of $\lambda$ for the existence of at least one positive solution for the system.

References

  • [1] R. B. Agarwal, D. O’Regan, P. J. Wang, Positive solutions of differential, Difference, and integral equations, Kluwer Academic, Boston, Ma, 1999.
  • [2] D. R. Anderson, R. I. Avery, A fourth-order four-point right focal boundary value problem, Rocky Mountain J. Math., 36 (2006), 367-380.
  • [3] N. Bouteraa, S. Benaicha, Triple positive solutions of higher-order nonlinear boundary value problems, J. Comput. Sci. Comput. Math., 7 (2017), 25–31.
  • [4] N. Bouteraa, S. Benaicha, Nonlinear boundary value problems for higher-order ordinary differential equation at resonance, Romanian J. Math. Comput. Sci., 2 (2018), 83–91.
  • [5] N. Bouteraa, S. Benaicha, Existence of solutions for third-order three-point boundary value problem, Mathematica, 60(83) (2018), 12–22.
  • [6] A. Cabada, S. Heikkila, Uniqueness, comparison and existence results for third-order functional initial-boundary value problems, Comput. Math. Appl., 41 (2001), 607–618.
  • [7] A. Cabada, S. Tersian, Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 2014, 2014:105.
  • [8] J. Davis, J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundary value problems, Panamer. Math. J., 8 (1998), 23–35.
  • [9] H. Djourdem, S. Benaicha, Existence of positive solutions for a nonlinear three-point boundary value problem with integral boundary conditions, Acta Math. Univ. Comenianae, 87 (2018), 167–177.
  • [10] L. H. Erbe, H. Wang, On -the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) 743–748.
  • [11] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation, Appl. Anal., 26 (1988), 289–304.
  • [12] G. Infante, P. Pientramala, A cantilever equation witht nonlinear boundary conditions, Electron. J. Qual. Theory Differe. Equ., Spec. Ed. I., 15 (2009), 1–14.
  • [13] R. Ma, L. Xu, Existence of positive solutions for a nonlinear fourth-order boundary value problem, Appl. Math. Lett. 23 (2010), 537–543.
  • [14] Y. Sun, C. Zhu, Existence of positive solutions for singular fourth-order three-point boundary value problems, Adv. Differ. Equ., 2013, 2013:51. doi:10.1186-1847-2013-51.
  • [15] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415–426.
  • [16] E. Alves, T.F.Ma., M.L. Policer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions value, Nonlinear Anal. 71 (2009), 3834–3841.
  • [17] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation at resonance, J. Math. Anal Appl. 135 (1988), 208–225.
  • [18] R. Ma, B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sin. Engl. Ser. 24 (2008), 27–34.
  • [19] Q. Yao, Local existence of multiple positive solutions to a singular cantiliver beam equation, J. Math. Anal. Appl. 363 (2010), 138–154.
  • [20] N. Bouteraa, S. Benaicha, Positive periodic solutions for a class of fourth-order nonlinear differential equations, Numerical Analysis and Applications., 22(1) (2019), 1–14.
  • [21] N. Bouteraa, S. Benaicha, H. Djourdem, M.E. Benattia, Positive solutions for fourth-order two-point boundary value problem with a parameter, Romanian J. Math. Comput. Sci., 8 (2018), 17–30.
  • [22] H. Djourdem, S. Benaicha, N. Bouteraa, Existence and iteration of monotone positive solution for a fourth-order nonlinear boundary value problem, Fundam. J. Math. Appl., 1 (2018), 205–211.
  • [23] L. Hu, L. L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equation, J. Math. Anal. Appl., 355 (2007), 1052–1060.
  • [24] B. Liu, L. Liu, Y. Wu, Positive solutions for singular systems of three-point boundary value problems, Computers Math. Appl., 53 (2007), 1429–1438.
  • [25] Y. Zhou, Y. Xu, Positive solutions of three boundary value problems for systems of nonlinear second order ordinary differential equation, J. Math. Anal. Appl., 320 (2006), 578–590.
  • [26] M. A. Krasnosel’skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Noureddine Bouteraa

Slimane Benaicha This is me

Habib Djourdem

Publication Date April 20, 2019
Submission Date June 10, 2018
Acceptance Date January 1, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Bouteraa, N., Benaicha, S., & Djourdem, H. (2019). Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter. Journal of Mathematical Sciences and Modelling, 2(1), 30-38. https://doi.org/10.33187/jmsm.432678
AMA Bouteraa N, Benaicha S, Djourdem H. Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter. Journal of Mathematical Sciences and Modelling. April 2019;2(1):30-38. doi:10.33187/jmsm.432678
Chicago Bouteraa, Noureddine, Slimane Benaicha, and Habib Djourdem. “Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems With Parameter”. Journal of Mathematical Sciences and Modelling 2, no. 1 (April 2019): 30-38. https://doi.org/10.33187/jmsm.432678.
EndNote Bouteraa N, Benaicha S, Djourdem H (April 1, 2019) Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter. Journal of Mathematical Sciences and Modelling 2 1 30–38.
IEEE N. Bouteraa, S. Benaicha, and H. Djourdem, “Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 1, pp. 30–38, 2019, doi: 10.33187/jmsm.432678.
ISNAD Bouteraa, Noureddine et al. “Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems With Parameter”. Journal of Mathematical Sciences and Modelling 2/1 (April 2019), 30-38. https://doi.org/10.33187/jmsm.432678.
JAMA Bouteraa N, Benaicha S, Djourdem H. Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter. Journal of Mathematical Sciences and Modelling. 2019;2:30–38.
MLA Bouteraa, Noureddine et al. “Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems With Parameter”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 1, 2019, pp. 30-38, doi:10.33187/jmsm.432678.
Vancouver Bouteraa N, Benaicha S, Djourdem H. Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter. Journal of Mathematical Sciences and Modelling. 2019;2(1):30-8.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.