Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 3, 176 - 182, 26.12.2019
https://doi.org/10.33187/jmsm.560049

Abstract

References

  • [1] M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Qualitative behavior of two rational difference equations, Fundam. J. Math. Appl., 1(2) (2018), 194-204.
  • [2] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=ax_{n-1}/(1+bx_{n}x_{n-1})$, Appl. Math. Comput., 156 (2004), 587-590.
  • [3] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation $x_{n+1}=ax_{n}-(bx_{n})/(cx_{n}-dx_{n-1})$, Adv. Difference Equ., 2006 (2006), Article ID 82579, 1-10.
  • [4] M. Garic-Demirovic, M. Nurkanovic, Z. Nurkanovic, Stability, periodicity and Neimark-Sacker bifurcation of certain homogeneous fractional difference equations, Int. J. Difference Equ., 12(1) (2017), 27-53.
  • [5] M. Ghazel, E.M. Elsayed, A. E. Matouk, A. M. Mousallam, Investigating dynamical behaviors of the difference equation $x_{n+1}=Cx_{n-5}/(A+Bx_{n-2}x_{n-5})$; J. Nonlinear Sci. Appl., 10 (2017), 4662–4679.
  • [6] T. Khyat, M. R. S. Kulenovic, The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation, Int. J. Difference Equ., 12(2) (2017), 267-280.
  • [7] M. Saleh, N. Alkoumi, Aseel Farhat, On the dynamic of a rational difference equation $x_{n+1}=\alpha+\beta x_{n}+\gamma x_{n-k}/B x_{n}+C x_{n-k}$; Chaos, Solitons Fractals, 96(2017), 76–84.
  • [8] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10) (2006), 475-480.
  • [9] M. B. Almatrafi, E. M. Elsayed, Solutions and formulae for some systems of difference equations, MathLAB J., 1(3) (2018), 356-369.
  • [10] M. B. Almatrafi, E. M. Elsayed, Faris Alzahrani, Qualitative behavior of a quadratic second-order rational difference equation, Int. J. Adv. Math., 2019(1) (2019), 1-14.
  • [11] F. Belhannache, N. Touafek, R. Abo-zeid, On a higher-order rational difference equation, J. Appl. Math. & Informatics, 34(5-6) (2016), 369-382.
  • [12] E. M. Elabbasy, H. El-Metawally, E. M. Elsayed, On the difference equation $x_{n+1}=(ax_{n}^{2}+bx_{n-1}x_{n-k})/(cx_{n}^{2}+dx_{n-1}x_{n-k})$, Sarajevo J. Math., 4(17) (2008), 1-10.
  • [13] M.A. El-Moneam, E.M.E. Zayed, Dynamics of the rational difference equation, Inform. Sci. Letters, 3(2) (2014), 45-53.
  • [14] A. Khaliq, Sk.S. Hassan, Dynamics of a rational difference equation $x_{n+1}=ax_{n}+(\alpha+\beta x_{n-k})/(A+Bx_{n-k})$, Int. J. Adv. Math., 2018(1) (2018), 159-179.
  • [15] V. L. Kocic, G. Ladas, Global Behaviour of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [16] Y. Kostrov, Z. Kudlak, On a second-order rational difference equation with a quadratic term, Int. J. Difference Equ., 11(2) (2016), 179-202.
  • [17] K. Liu, P. Li, F. Han, W. Zhong, Global dynamics of nonlinear difference equation $x_{n+1}=A+x_{n}/x_{n-1}x_{n-2}$, J. Comput. Anal. Appl., 24(6) (2018), 1125-1132.
  • [18] S. Moranjkic, Z. Nurkanovic, Local and global dynamics of certain second-order rational difference equations containing quadratic terms, Adv. Dyn. Syst. Appl., 12(2) (2017), 123-157.
  • [19] M. Saleh, M. Aloqeili, On the rational difference equation $x_{n+1}=\frac{ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$, Appl. Math. Comput. 171(1) (2005), 862-869.
  • [20] E. M. Elsayed, Dynamics of recursive sequence of order two, Kyungpook Math. J., 50 (2010), 483-497.

Analysis of the Convergence and Periodicity of a Rational Difference Equation

Year 2019, Volume: 2 Issue: 3, 176 - 182, 26.12.2019
https://doi.org/10.33187/jmsm.560049

Abstract

The exact solutions of most difference equations cannot be obtained sometimes. This can be attributed to the fact that there is no a specific approach from which one can find the exact solution. Therefore, many researchers tend to study the qualitative behaviours of these equations.  In this paper, we will investigate some qualitative properties such as local stability, global stability, periodicity and solutions of the following eighth order recursive equation \begin{eqnarray*} x_{n+1}=c_{1}x_{n-3}-\frac{c_{2}x_{n-3}}{c_{3} x_{n-3}- c_{4} x_{n-7}},\;\;\;n=0,1,..., \end{eqnarray*} {\Large \noindent }where the coefficients $c_{i},\ \textit{for all} \ i=1,...,4,$ are assumed to be positive real numbers and the initial conditions $x_{i} \ \textit{ for all} \ i=-7,-6,...,0, $ are arbitrary non-zero real numbers.

References

  • [1] M. B. Almatrafi, E. M. Elsayed, F. Alzahrani, Qualitative behavior of two rational difference equations, Fundam. J. Math. Appl., 1(2) (2018), 194-204.
  • [2] C. Cinar, On the positive solutions of the difference equation $x_{n+1}=ax_{n-1}/(1+bx_{n}x_{n-1})$, Appl. Math. Comput., 156 (2004), 587-590.
  • [3] E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, On the difference equation $x_{n+1}=ax_{n}-(bx_{n})/(cx_{n}-dx_{n-1})$, Adv. Difference Equ., 2006 (2006), Article ID 82579, 1-10.
  • [4] M. Garic-Demirovic, M. Nurkanovic, Z. Nurkanovic, Stability, periodicity and Neimark-Sacker bifurcation of certain homogeneous fractional difference equations, Int. J. Difference Equ., 12(1) (2017), 27-53.
  • [5] M. Ghazel, E.M. Elsayed, A. E. Matouk, A. M. Mousallam, Investigating dynamical behaviors of the difference equation $x_{n+1}=Cx_{n-5}/(A+Bx_{n-2}x_{n-5})$; J. Nonlinear Sci. Appl., 10 (2017), 4662–4679.
  • [6] T. Khyat, M. R. S. Kulenovic, The invariant curve caused by Neimark-Sacker bifurcation of a perturbed Beverton-Holt difference equation, Int. J. Difference Equ., 12(2) (2017), 267-280.
  • [7] M. Saleh, N. Alkoumi, Aseel Farhat, On the dynamic of a rational difference equation $x_{n+1}=\alpha+\beta x_{n}+\gamma x_{n-k}/B x_{n}+C x_{n-k}$; Chaos, Solitons Fractals, 96(2017), 76–84.
  • [8] D. Simsek, C. Cinar, I. Yalcinkaya, On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$, Int. J. Contemp. Math. Sci., 1(10) (2006), 475-480.
  • [9] M. B. Almatrafi, E. M. Elsayed, Solutions and formulae for some systems of difference equations, MathLAB J., 1(3) (2018), 356-369.
  • [10] M. B. Almatrafi, E. M. Elsayed, Faris Alzahrani, Qualitative behavior of a quadratic second-order rational difference equation, Int. J. Adv. Math., 2019(1) (2019), 1-14.
  • [11] F. Belhannache, N. Touafek, R. Abo-zeid, On a higher-order rational difference equation, J. Appl. Math. & Informatics, 34(5-6) (2016), 369-382.
  • [12] E. M. Elabbasy, H. El-Metawally, E. M. Elsayed, On the difference equation $x_{n+1}=(ax_{n}^{2}+bx_{n-1}x_{n-k})/(cx_{n}^{2}+dx_{n-1}x_{n-k})$, Sarajevo J. Math., 4(17) (2008), 1-10.
  • [13] M.A. El-Moneam, E.M.E. Zayed, Dynamics of the rational difference equation, Inform. Sci. Letters, 3(2) (2014), 45-53.
  • [14] A. Khaliq, Sk.S. Hassan, Dynamics of a rational difference equation $x_{n+1}=ax_{n}+(\alpha+\beta x_{n-k})/(A+Bx_{n-k})$, Int. J. Adv. Math., 2018(1) (2018), 159-179.
  • [15] V. L. Kocic, G. Ladas, Global Behaviour of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [16] Y. Kostrov, Z. Kudlak, On a second-order rational difference equation with a quadratic term, Int. J. Difference Equ., 11(2) (2016), 179-202.
  • [17] K. Liu, P. Li, F. Han, W. Zhong, Global dynamics of nonlinear difference equation $x_{n+1}=A+x_{n}/x_{n-1}x_{n-2}$, J. Comput. Anal. Appl., 24(6) (2018), 1125-1132.
  • [18] S. Moranjkic, Z. Nurkanovic, Local and global dynamics of certain second-order rational difference equations containing quadratic terms, Adv. Dyn. Syst. Appl., 12(2) (2017), 123-157.
  • [19] M. Saleh, M. Aloqeili, On the rational difference equation $x_{n+1}=\frac{ax_{n}+bx_{n-k}}{A+Bx_{n-k}}$, Appl. Math. Comput. 171(1) (2005), 862-869.
  • [20] E. M. Elsayed, Dynamics of recursive sequence of order two, Kyungpook Math. J., 50 (2010), 483-497.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mohammed Almatrafi 0000-0002-6859-2028

Marwa Alzubaidi 0000-0002-3314-5244

Publication Date December 26, 2019
Submission Date May 2, 2019
Acceptance Date July 28, 2019
Published in Issue Year 2019 Volume: 2 Issue: 3

Cite

APA Almatrafi, M., & Alzubaidi, M. (2019). Analysis of the Convergence and Periodicity of a Rational Difference Equation. Journal of Mathematical Sciences and Modelling, 2(3), 176-182. https://doi.org/10.33187/jmsm.560049
AMA Almatrafi M, Alzubaidi M. Analysis of the Convergence and Periodicity of a Rational Difference Equation. Journal of Mathematical Sciences and Modelling. December 2019;2(3):176-182. doi:10.33187/jmsm.560049
Chicago Almatrafi, Mohammed, and Marwa Alzubaidi. “Analysis of the Convergence and Periodicity of a Rational Difference Equation”. Journal of Mathematical Sciences and Modelling 2, no. 3 (December 2019): 176-82. https://doi.org/10.33187/jmsm.560049.
EndNote Almatrafi M, Alzubaidi M (December 1, 2019) Analysis of the Convergence and Periodicity of a Rational Difference Equation. Journal of Mathematical Sciences and Modelling 2 3 176–182.
IEEE M. Almatrafi and M. Alzubaidi, “Analysis of the Convergence and Periodicity of a Rational Difference Equation”, Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, pp. 176–182, 2019, doi: 10.33187/jmsm.560049.
ISNAD Almatrafi, Mohammed - Alzubaidi, Marwa. “Analysis of the Convergence and Periodicity of a Rational Difference Equation”. Journal of Mathematical Sciences and Modelling 2/3 (December 2019), 176-182. https://doi.org/10.33187/jmsm.560049.
JAMA Almatrafi M, Alzubaidi M. Analysis of the Convergence and Periodicity of a Rational Difference Equation. Journal of Mathematical Sciences and Modelling. 2019;2:176–182.
MLA Almatrafi, Mohammed and Marwa Alzubaidi. “Analysis of the Convergence and Periodicity of a Rational Difference Equation”. Journal of Mathematical Sciences and Modelling, vol. 2, no. 3, 2019, pp. 176-82, doi:10.33187/jmsm.560049.
Vancouver Almatrafi M, Alzubaidi M. Analysis of the Convergence and Periodicity of a Rational Difference Equation. Journal of Mathematical Sciences and Modelling. 2019;2(3):176-82.

29237    Journal of Mathematical Sciences and Modelling 29238

                   29233

Creative Commons License The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.