Research Article
BibTex RIS Cite
Year 2025, Volume: 5 Issue: 1, 64 - 72
https://doi.org/10.57019/jmv.1596909

Abstract

References

  • Deepu, T. S., & Ravi, V. (2021). Exploring critical success factors influencing adoption of digital twin and physical internet in electronics industry using the grey-DEMATEL approach. Digital Business, 1(2), 100009. https://doi.org/10.1016/j.digbus.2021.100009
  • del Campo, G., Saavedra, E., Piovano, L., Luque, F., & Santamaria, A. (2024). Virtual Reality and Internet of Things Based Digital Twin for Smart City Cross-Domain Interoperability. Applied Sciences, 14(7), 2747. https://doi.org/10.3390/app14072747
  • Bisanti, G. M., Mainetti, L., Montanaro, T., Patrono, L., & Sergi, I. (2023). Digital twins for aircraft maintenance and operation: A systematic literature review and an IoT-enabled modular architecture. Internet of Things, 100991. https://doi.org/10.1016/j.iot.2023.100991
  • Trendowicz, A., Groen, E. C., Henningsen, J., Siebert, J., Bartels, N., Storck, S., & Kuhn, T. (2023). User experience key performance indicators for industrial IoT systems: A multivocal literature review. Digital Business, 3(1), 100057. https://doi.org/10.1016/j.digbus.2023.100057
  • Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14534
  • Yao, J. F., Yang, Y., Wang, X. C., & Zhang, X. P. (2023). Systematic review of digital twin technology and applications. Visual Computing for Industry, Biomedicine, And Art, 6(1), 10. https://doi.org/10.1186/s42492-023-00137-4
  • Moshood, T. D., Rotimi, J. O., Shahzad, W., & Bamgbade, J. A. (2024). Infrastructure digital twin technology: A new paradigm for future construction industry. Technology in Society, 77, 102519. https://doi.org/10.1016/j.techsoc.2024.102519
  • Arowoiya, V. A., Moehler, R. C., & Fang, Y. (2024). Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. Energy and Built Environment, 5(5), 641-656. https://doi.org/10.1016/j.enbenv.2023.05.004
  • Van Oudenhoven, B., Van de Calseyde, P., Basten, R., & Demerouti, E. (2023). Predictive maintenance for industry 5.0: Behavioural inquiries from a work system perspective. International Journal of Production Research, 61(22), 7846-7865. https://doi.org/10.1080/00207543.2022.2154403
  • Murtaza, A. A., Saher, A., Zafar, M. H., Moosavi, S. K. R., Aftab, M. F., & Sanfilippo, F. (2024). Paradigm Shift for Predictive Maintenance and Condition Monitoring from Industry 4.0 to Industry 5.0: A Systematic Review, Challenges and Case Study. Results in Engineering, 102935. https://doi.org/10.1016/j.rineng.2024.102935
  • Ejjami, R., & Boussalham, K. (2024). Resilient Supply Chains in Industry 5.0: Leveraging AI for Predictive Maintenance and Risk Mitigation. International Journal for Multidisciplinary Research, 6(4), 1-32. https://doi.org/10.36948/ijfmr.2024.v06i04.25116
  • Frick, J. (2023). Future of industrial asset management: A synergy of digitalization, digital twins, maintenance 5.0/quality 5.0, industry 5.0 and iso55000. International Journal of Business Marketing and Management, 8(4), 93-99.
  • Adel, A. (2023). Unlocking the future: fostering human–machine collaboration and driving intelligent automation through industry 5.0 in smart cities. Smart Cities, 6(5), 2742-2782. https://doi.org/10.3390/smartcities6050124
  • Pizoń, J., & Gola, A. (2023). Human–machine relationship—perspective and future roadmap for industry 5.0 solutions. Machines, 11(2), 203; 1-22. https://doi.org/10.3390/machines11020203
  • Alves, J., Lima, T. M., & Gaspar, P. D. (2023). Is industry 5.0 a human-centred approach? a systematic review. Processes, 11(1), 193;1-15. https://doi.org/10.3390/pr11010193
  • Marinelli, M. (2023). From Industry 4.0 to Construction 5.0: Exploring the Path towards Human–Robot Collaboration in Construction. Systems, 11(3), 152; 1-23. https://doi.org/10.3390/systems11030152
  • Peruzzini, M., Prati, E., & Pellicciari, M. (2024). A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis. International journal of computer integrated manufacturing, 37(10-11), 1426-1443. https://doi.org/10.1080/0951192X.2023.2257634
  • Zafar, M. H., Langås, E. F., & Sanfilippo, F. (2024). Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review. Robotics and Computer-Integrated Manufacturing, 89, 102769. https://doi.org/10.1016/j.rcim.2024.102769
  • Zhang, C., Wang, Z., Zhou, G., Chang, F., Ma, D., Jing, Y., ... & Zhao, D. (2023). Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review. Advanced Engineering Informatics, 57, 102121. https://doi.org/10.1016/j.aei.2023.102121
  • Calzavara, M., Faccio, M., & Granata, I. (2023). Multi-objective task allocation for collaborative robot systems with an Industry 5.0 human-centered perspective. The International Journal of Advanced Manufacturing Technology, 128(1-2), 297-314. https://doi.org/10.1007/s00170-023-11673-x
  • Huang, W., Liu, Y., & Zhang, X. (2023). Hybrid particle swarm optimization algorithm based on the theory of reinforcement learning in psychology. Systems, 11(2), 83. https://doi.org/10.3390/systems11020083
  • Hu, S., & Li, K. (2023). Bayesian network demand-forecasting model based on modified particle swarm optimization. Applied Sciences, 13(18), 10088. https://doi.org/10.3390/app131810088
  • Abdul Karim, S. A., & Tamin, O. (2024). Intelligent System Modeling in Industrial 4.0. In Intelligent Systems Modeling and Simulation III: Artificial Intelligent, Machine Learning, Intelligent Functions and Cyber Security (pp. 1-13). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67317-7_1
  • Soesanto, J. (2024). Digital Twin and Smart Automation for Bitumen Extraction Process. [Master thesis, University of Alberta]. University of Alberta Education and Research Archive. https://doi.org/10.7939/r3-wgex-2h6
  • Marugán, A. P. (2023). Applications of Reinforcement Learning for maintenance of engineering systems: A review. Advances in Engineering Software, 183, 103487. https://doi.org/10.1016/j.advengsoft.2023.103487
  • Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors, 23(13), 5970. https://doi.org/10.3390/s23135970
  • Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14534
  • Abouelyazid, M. (2023). Advanced Artificial Intelligence Techniques for Real-Time Predictive Maintenance in Industrial IoT Systems: A Comprehensive Analysis and Framework. Journal of AI-Assisted Scientific Discovery, 3(1), 271-313.
  • Qiu, S., Cui, X., Ping, Z., Shan, N., Li, Z., Bao, X., & Xu, X. (2023). Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: a review. Sensors, 23(3), 1305. https://doi.org/10.3390/s23031305
  • Meriem, H., Nora, H., & Samir, O. (2023). Predictive maintenance for smart industrial systems: a roadmap. Procedia Computer Science, 220, 645-650. https://doi.org/10.1016/j.procs.2023.03.082
  • Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. https://doi.org/10.1016/j.measen.2023.100822
  • van Dinter, R., Tekinerdogan, B., & Catal, C. (2023). Reference architecture for digital twin-based predictive maintenance systems. Computers & Industrial Engineering, 177, 109099. https://doi.org/10.1016/j.cie.2023.109099
  • Weerapura, V., Sugathadasa, R., De Silva, M. M., Nielsen, I., & Thibbotuwawa, A. (2023). Feasibility of digital twins to manage the operational risks in the production of a ready-mix concrete plant. Buildings, 13(2), 447. https://doi.org/10.3390/buildings13020447
  • Boumallessa, Z., Chouikhi, H., Elleuch, M., & Bentaher, H. (2023). Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system. Reliability Engineering & System Safety, 235, 109216. https://doi.org/10.1016/j.ress.2023.109216
  • Khan, M. F. I., & Masum, A. K. M. (2024). Predictive Analytics And Machine Learning For Real-Time Detection Of Software Defects And Agile Test Management. Educational Administration: Theory and Practice, 30(4), 1051-1057.

Human-Centric IoT-Driven Digital Twins in Predictive Maintenance for Optimizing Industry 5.0

Year 2025, Volume: 5 Issue: 1, 64 - 72
https://doi.org/10.57019/jmv.1596909

Abstract

Predictive maintenance now heavily relies on digital twins and the Internet of Things (IoT), which allow industrial assets to be monitored and decisions made in real time. However, adding human components to conventional optimization processes creates new difficulties as Industry 5.0 moves toward human-centric systems. Existing frameworks frequently disregard human preferences, intuition, and safety considerations, which makes human operators distrustful and unwilling to accept them. To enable predictive maintenance, this paper presents a novel multi-objective optimization framework that incorporates human feedback into IoT-driven digital twins. The framework uses an enhanced particle swarm optimization (PSO) algorithm to reconcile competing goals, including maintaining operator safety, optimizing asset reliability, and minimizing maintenance costs. Furthermore, maintenance tasks are adaptively scheduled using built-in reinforcement learning (RL) and optimized model parameters are fine-tuned for improved predictive accuracy using Bayesian optimization. The latter is based on real-time operational data. In addition to promoting a safer working environment, the suggested approach shows a significant reduction in unplanned downtime and maintenance costs. This research contributes to the development of more resilient, adaptive, and collaborative industrial systems by aligning with the human-centric principles of Industry 5.0. The proposed model was tested using the maintenance duration and achieved an improvement of 10 to 100 hours. The model was further compared with the PSO algorithm, demonstrating its superiority with a 7.5% reduction in total maintenance cost and a 6.3% decrease in total downtime. These improvements contribute to enhanced operational efficiency and better human-machine collaboration by minimizing unnecessary interventions and optimizing resource allocation.

References

  • Deepu, T. S., & Ravi, V. (2021). Exploring critical success factors influencing adoption of digital twin and physical internet in electronics industry using the grey-DEMATEL approach. Digital Business, 1(2), 100009. https://doi.org/10.1016/j.digbus.2021.100009
  • del Campo, G., Saavedra, E., Piovano, L., Luque, F., & Santamaria, A. (2024). Virtual Reality and Internet of Things Based Digital Twin for Smart City Cross-Domain Interoperability. Applied Sciences, 14(7), 2747. https://doi.org/10.3390/app14072747
  • Bisanti, G. M., Mainetti, L., Montanaro, T., Patrono, L., & Sergi, I. (2023). Digital twins for aircraft maintenance and operation: A systematic literature review and an IoT-enabled modular architecture. Internet of Things, 100991. https://doi.org/10.1016/j.iot.2023.100991
  • Trendowicz, A., Groen, E. C., Henningsen, J., Siebert, J., Bartels, N., Storck, S., & Kuhn, T. (2023). User experience key performance indicators for industrial IoT systems: A multivocal literature review. Digital Business, 3(1), 100057. https://doi.org/10.1016/j.digbus.2023.100057
  • Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14534
  • Yao, J. F., Yang, Y., Wang, X. C., & Zhang, X. P. (2023). Systematic review of digital twin technology and applications. Visual Computing for Industry, Biomedicine, And Art, 6(1), 10. https://doi.org/10.1186/s42492-023-00137-4
  • Moshood, T. D., Rotimi, J. O., Shahzad, W., & Bamgbade, J. A. (2024). Infrastructure digital twin technology: A new paradigm for future construction industry. Technology in Society, 77, 102519. https://doi.org/10.1016/j.techsoc.2024.102519
  • Arowoiya, V. A., Moehler, R. C., & Fang, Y. (2024). Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. Energy and Built Environment, 5(5), 641-656. https://doi.org/10.1016/j.enbenv.2023.05.004
  • Van Oudenhoven, B., Van de Calseyde, P., Basten, R., & Demerouti, E. (2023). Predictive maintenance for industry 5.0: Behavioural inquiries from a work system perspective. International Journal of Production Research, 61(22), 7846-7865. https://doi.org/10.1080/00207543.2022.2154403
  • Murtaza, A. A., Saher, A., Zafar, M. H., Moosavi, S. K. R., Aftab, M. F., & Sanfilippo, F. (2024). Paradigm Shift for Predictive Maintenance and Condition Monitoring from Industry 4.0 to Industry 5.0: A Systematic Review, Challenges and Case Study. Results in Engineering, 102935. https://doi.org/10.1016/j.rineng.2024.102935
  • Ejjami, R., & Boussalham, K. (2024). Resilient Supply Chains in Industry 5.0: Leveraging AI for Predictive Maintenance and Risk Mitigation. International Journal for Multidisciplinary Research, 6(4), 1-32. https://doi.org/10.36948/ijfmr.2024.v06i04.25116
  • Frick, J. (2023). Future of industrial asset management: A synergy of digitalization, digital twins, maintenance 5.0/quality 5.0, industry 5.0 and iso55000. International Journal of Business Marketing and Management, 8(4), 93-99.
  • Adel, A. (2023). Unlocking the future: fostering human–machine collaboration and driving intelligent automation through industry 5.0 in smart cities. Smart Cities, 6(5), 2742-2782. https://doi.org/10.3390/smartcities6050124
  • Pizoń, J., & Gola, A. (2023). Human–machine relationship—perspective and future roadmap for industry 5.0 solutions. Machines, 11(2), 203; 1-22. https://doi.org/10.3390/machines11020203
  • Alves, J., Lima, T. M., & Gaspar, P. D. (2023). Is industry 5.0 a human-centred approach? a systematic review. Processes, 11(1), 193;1-15. https://doi.org/10.3390/pr11010193
  • Marinelli, M. (2023). From Industry 4.0 to Construction 5.0: Exploring the Path towards Human–Robot Collaboration in Construction. Systems, 11(3), 152; 1-23. https://doi.org/10.3390/systems11030152
  • Peruzzini, M., Prati, E., & Pellicciari, M. (2024). A framework to design smart manufacturing systems for Industry 5.0 based on the human-automation symbiosis. International journal of computer integrated manufacturing, 37(10-11), 1426-1443. https://doi.org/10.1080/0951192X.2023.2257634
  • Zafar, M. H., Langås, E. F., & Sanfilippo, F. (2024). Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review. Robotics and Computer-Integrated Manufacturing, 89, 102769. https://doi.org/10.1016/j.rcim.2024.102769
  • Zhang, C., Wang, Z., Zhou, G., Chang, F., Ma, D., Jing, Y., ... & Zhao, D. (2023). Towards new-generation human-centric smart manufacturing in Industry 5.0: A systematic review. Advanced Engineering Informatics, 57, 102121. https://doi.org/10.1016/j.aei.2023.102121
  • Calzavara, M., Faccio, M., & Granata, I. (2023). Multi-objective task allocation for collaborative robot systems with an Industry 5.0 human-centered perspective. The International Journal of Advanced Manufacturing Technology, 128(1-2), 297-314. https://doi.org/10.1007/s00170-023-11673-x
  • Huang, W., Liu, Y., & Zhang, X. (2023). Hybrid particle swarm optimization algorithm based on the theory of reinforcement learning in psychology. Systems, 11(2), 83. https://doi.org/10.3390/systems11020083
  • Hu, S., & Li, K. (2023). Bayesian network demand-forecasting model based on modified particle swarm optimization. Applied Sciences, 13(18), 10088. https://doi.org/10.3390/app131810088
  • Abdul Karim, S. A., & Tamin, O. (2024). Intelligent System Modeling in Industrial 4.0. In Intelligent Systems Modeling and Simulation III: Artificial Intelligent, Machine Learning, Intelligent Functions and Cyber Security (pp. 1-13). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67317-7_1
  • Soesanto, J. (2024). Digital Twin and Smart Automation for Bitumen Extraction Process. [Master thesis, University of Alberta]. University of Alberta Education and Research Archive. https://doi.org/10.7939/r3-wgex-2h6
  • Marugán, A. P. (2023). Applications of Reinforcement Learning for maintenance of engineering systems: A review. Advances in Engineering Software, 183, 103487. https://doi.org/10.1016/j.advengsoft.2023.103487
  • Molęda, M., Małysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From corrective to predictive maintenance—A review of maintenance approaches for the power industry. Sensors, 23(13), 5970. https://doi.org/10.3390/s23135970
  • Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14534
  • Abouelyazid, M. (2023). Advanced Artificial Intelligence Techniques for Real-Time Predictive Maintenance in Industrial IoT Systems: A Comprehensive Analysis and Framework. Journal of AI-Assisted Scientific Discovery, 3(1), 271-313.
  • Qiu, S., Cui, X., Ping, Z., Shan, N., Li, Z., Bao, X., & Xu, X. (2023). Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems: a review. Sensors, 23(3), 1305. https://doi.org/10.3390/s23031305
  • Meriem, H., Nora, H., & Samir, O. (2023). Predictive maintenance for smart industrial systems: a roadmap. Procedia Computer Science, 220, 645-650. https://doi.org/10.1016/j.procs.2023.03.082
  • Rahman, M. S., Ghosh, T., Aurna, N. F., Kaiser, M. S., Anannya, M., & Hosen, A. S. (2023). Machine learning and internet of things in industry 4.0: A review. Measurement: Sensors, 28, 100822. https://doi.org/10.1016/j.measen.2023.100822
  • van Dinter, R., Tekinerdogan, B., & Catal, C. (2023). Reference architecture for digital twin-based predictive maintenance systems. Computers & Industrial Engineering, 177, 109099. https://doi.org/10.1016/j.cie.2023.109099
  • Weerapura, V., Sugathadasa, R., De Silva, M. M., Nielsen, I., & Thibbotuwawa, A. (2023). Feasibility of digital twins to manage the operational risks in the production of a ready-mix concrete plant. Buildings, 13(2), 447. https://doi.org/10.3390/buildings13020447
  • Boumallessa, Z., Chouikhi, H., Elleuch, M., & Bentaher, H. (2023). Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system. Reliability Engineering & System Safety, 235, 109216. https://doi.org/10.1016/j.ress.2023.109216
  • Khan, M. F. I., & Masum, A. K. M. (2024). Predictive Analytics And Machine Learning For Real-Time Detection Of Software Defects And Agile Test Management. Educational Administration: Theory and Practice, 30(4), 1051-1057.
There are 35 citations in total.

Details

Primary Language English
Subjects Innovation Management
Journal Section Research Articles
Authors

Özlem Sabuncu 0000-0002-9159-7791

Bülent Bilgehan 0000-0003-1615-6766

Early Pub Date March 21, 2025
Publication Date
Submission Date December 5, 2024
Acceptance Date March 20, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

APA Sabuncu, Ö., & Bilgehan, B. (2025). Human-Centric IoT-Driven Digital Twins in Predictive Maintenance for Optimizing Industry 5.0. Journal of Metaverse, 5(1), 64-72. https://doi.org/10.57019/jmv.1596909

Journal of Metaverse
is indexed and abstracted by
Scopus, ESCI and DOAJ

Publisher
Izmir Academy Association
www.izmirakademi.org