Research Article
BibTex RIS Cite

Barrow holographic dark energy models in Lyra and general relativity theories

Year 2024, Volume: 13 Issue: 2, 119 - 127, 31.08.2024
https://doi.org/10.54187/jnrs.1517322

Abstract

This study investigates the Barrow holographic dark energy (BHDE) matter distribution in the Bianchi I universe model in Lyra and General Relativity Theories. To this end, it obtains exact solutions by Hubble parameter, conservation equation, and BHDE energy density equation and supports them with graphics. The results show that the solutions are in harmony with the functioning of the universe and the nature of dark energy. It finally discusses the need for further research.

Ethical Statement

No approval from the Board of Ethics is required.

Supporting Institution

Çanakkale Onsekiz Mart University The Scientific Research Coordination Unit

Project Number

FHD-2024-4612

References

  • A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, The Astronomical Journal, 116(3), (1998) 1009.
  • S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, The Astrophysical Journal, 517(2), (1999) 565–586.
  • P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Reviews of Modern Physics, 75, (2003) 559–606.
  • L. Susskind, The world as a hologram, Journal of Mathematical Physics, 36 (11) (1995) 6377– 6396.
  • M. Li, A model of holographic dark energy, Physics Letters B, 603 (1-2) (2004) 1–5.
  • A. Chanda, A. K. Mitra, S. Dey, S. Ghose, B. C. Paul, Barrow holographic dark energy in Brane world cosmology, Classical and Quantum Gravity, 41 (3) (2024) 035004.
  • Pankaj, A. Remya, U. K. Sharma, Cosmological model in Barrow holographic dark energy with Granda-Oliveros cut-off, International Journal of Modern Physics A, 38 (2023) 2350185–6.
  • K. Devi, P. Kumar, Recent acceleration and future deceleration in Brans-Dicke theory, General Relativity and Gravitation, 56 (1), (2023) 4.
  • Y. Sobhanbabu, R. S. Rao, Y. J. Prasuna, G. Satyanarayana, Kantowski-Sachs Barrow holographic dark energy model in Saez-Ballester theory of gravitation, New Astronomy, 104, (2023) 102066.
  • W. Feng, W. Yang, B. Jiang, Y. Wang, T. Han, Y. Wu, Theoretical analysis on the Barrow holographic dark energy in the Finsler-Randers cosmology, International Journal of Modern Physics D, 32 (5) (2023) 2350029.
  • A. Remya, U. K. Pankaj, Sharma, N. M. Ali, Cosmological evolution and stability analysis in non-flat universe and Barrow holographic model of dark energy, Astrophysics and Space Science, 368 (3) (2023) 15.
  • U. K. Sharma, M. Kumar, G. Varshney, Scalar field models of Barrow holographic dark energy in $f(R,T)$ Gravity, Universe, 8 (12) (2022) 642.
  • S. Saha, S. Chattopadhyay, E. Güdekli, A coupled-fluid approach to explore bounce and inflationary cosmology with Barrow holographic as the driving dark fluid, European Physical Journal C, 84 (3) (2024) 314.
  • S. Sultana, E. Güdekli, S. Chattopadhyay, Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics, Zeitschrift Naturforschung Teil A, 79 (1) (2024) 51–70.
  • B. K. Shukla, D. Sofuoğlu, H. Chaudhary, F. Atamurotov, G. Mustafa, Cosmic evolution in $f(Q,T)$ gravity with observational constraints: A comparative analysis with ΛCDM, Journal of High Energy Astrophysics, 43 (2024) 1–14.
  • B. K. Shukla, R. K. Tiwari, A. Beesham, D. Sofuoğlu, Cosmology with the late time isotropy of the Bianchi type I model in $f(R,T)$ theory, International Journal of Geometric Methods in Modern Physics, 21 (3) (2024) 2450060–134.
  • K. Devi, A. Kumar, P. Kumar, Barrow holographic dark energy model in $f(R,T)$ theory, Astrophysics and Space Science, 369 (7) (2024) 73.
  • K. P. Singh, A. J. Meitei, Late time acceleration in Bianchi type-V dark energy cosmological models with linear deceleration parameter, Physica Scripta, 99 (7) (2024) 075046.
  • D. D. Pawar, D. K. Raut, A. P. Kale, Two forms of dark energy in fractal cosmological model using specific Hubble parameter, New Astronomy, 110 (2024) 102214.
  • A. Ditta, G. Mustafa, S. K. Maurya, D. Sofuoğlu, A. Mahmood, Comparative analysis of dark energy compact stars in $f(T,T)$ and $f(T)$ gravity theories via conformally flat condition, Classical and Quantum Gravity, 41 (15) (2024) 155004.
  • M. Srivastava, M. Kumar, S. Srivastava, Barrow holographic dark energy with hybrid expansion law, Gravitation and Cosmology, 28 (1) (2022) 70–80.
Year 2024, Volume: 13 Issue: 2, 119 - 127, 31.08.2024
https://doi.org/10.54187/jnrs.1517322

Abstract

Project Number

FHD-2024-4612

References

  • A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant, The Astronomical Journal, 116(3), (1998) 1009.
  • S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, T. S. C. Project, Measurements of Ω and Λ from 42 high-redshift supernovae, The Astrophysical Journal, 517(2), (1999) 565–586.
  • P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Reviews of Modern Physics, 75, (2003) 559–606.
  • L. Susskind, The world as a hologram, Journal of Mathematical Physics, 36 (11) (1995) 6377– 6396.
  • M. Li, A model of holographic dark energy, Physics Letters B, 603 (1-2) (2004) 1–5.
  • A. Chanda, A. K. Mitra, S. Dey, S. Ghose, B. C. Paul, Barrow holographic dark energy in Brane world cosmology, Classical and Quantum Gravity, 41 (3) (2024) 035004.
  • Pankaj, A. Remya, U. K. Sharma, Cosmological model in Barrow holographic dark energy with Granda-Oliveros cut-off, International Journal of Modern Physics A, 38 (2023) 2350185–6.
  • K. Devi, P. Kumar, Recent acceleration and future deceleration in Brans-Dicke theory, General Relativity and Gravitation, 56 (1), (2023) 4.
  • Y. Sobhanbabu, R. S. Rao, Y. J. Prasuna, G. Satyanarayana, Kantowski-Sachs Barrow holographic dark energy model in Saez-Ballester theory of gravitation, New Astronomy, 104, (2023) 102066.
  • W. Feng, W. Yang, B. Jiang, Y. Wang, T. Han, Y. Wu, Theoretical analysis on the Barrow holographic dark energy in the Finsler-Randers cosmology, International Journal of Modern Physics D, 32 (5) (2023) 2350029.
  • A. Remya, U. K. Pankaj, Sharma, N. M. Ali, Cosmological evolution and stability analysis in non-flat universe and Barrow holographic model of dark energy, Astrophysics and Space Science, 368 (3) (2023) 15.
  • U. K. Sharma, M. Kumar, G. Varshney, Scalar field models of Barrow holographic dark energy in $f(R,T)$ Gravity, Universe, 8 (12) (2022) 642.
  • S. Saha, S. Chattopadhyay, E. Güdekli, A coupled-fluid approach to explore bounce and inflationary cosmology with Barrow holographic as the driving dark fluid, European Physical Journal C, 84 (3) (2024) 314.
  • S. Sultana, E. Güdekli, S. Chattopadhyay, Some versions of Chaplygin gas model in modified gravity framework and validity of generalized second law of thermodynamics, Zeitschrift Naturforschung Teil A, 79 (1) (2024) 51–70.
  • B. K. Shukla, D. Sofuoğlu, H. Chaudhary, F. Atamurotov, G. Mustafa, Cosmic evolution in $f(Q,T)$ gravity with observational constraints: A comparative analysis with ΛCDM, Journal of High Energy Astrophysics, 43 (2024) 1–14.
  • B. K. Shukla, R. K. Tiwari, A. Beesham, D. Sofuoğlu, Cosmology with the late time isotropy of the Bianchi type I model in $f(R,T)$ theory, International Journal of Geometric Methods in Modern Physics, 21 (3) (2024) 2450060–134.
  • K. Devi, A. Kumar, P. Kumar, Barrow holographic dark energy model in $f(R,T)$ theory, Astrophysics and Space Science, 369 (7) (2024) 73.
  • K. P. Singh, A. J. Meitei, Late time acceleration in Bianchi type-V dark energy cosmological models with linear deceleration parameter, Physica Scripta, 99 (7) (2024) 075046.
  • D. D. Pawar, D. K. Raut, A. P. Kale, Two forms of dark energy in fractal cosmological model using specific Hubble parameter, New Astronomy, 110 (2024) 102214.
  • A. Ditta, G. Mustafa, S. K. Maurya, D. Sofuoğlu, A. Mahmood, Comparative analysis of dark energy compact stars in $f(T,T)$ and $f(T)$ gravity theories via conformally flat condition, Classical and Quantum Gravity, 41 (15) (2024) 155004.
  • M. Srivastava, M. Kumar, S. Srivastava, Barrow holographic dark energy with hybrid expansion law, Gravitation and Cosmology, 28 (1) (2022) 70–80.
There are 21 citations in total.

Details

Primary Language English
Subjects Applied Mathematics (Other)
Journal Section Articles
Authors

Arzu Aktaş 0000-0001-9571-8012

Sezgin Aygün 0000-0002-2969-4195

Project Number FHD-2024-4612
Early Pub Date August 30, 2024
Publication Date August 31, 2024
Submission Date July 16, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Aktaş, A., & Aygün, S. (2024). Barrow holographic dark energy models in Lyra and general relativity theories. Journal of New Results in Science, 13(2), 119-127. https://doi.org/10.54187/jnrs.1517322
AMA Aktaş A, Aygün S. Barrow holographic dark energy models in Lyra and general relativity theories. JNRS. August 2024;13(2):119-127. doi:10.54187/jnrs.1517322
Chicago Aktaş, Arzu, and Sezgin Aygün. “Barrow Holographic Dark Energy Models in Lyra and General Relativity Theories”. Journal of New Results in Science 13, no. 2 (August 2024): 119-27. https://doi.org/10.54187/jnrs.1517322.
EndNote Aktaş A, Aygün S (August 1, 2024) Barrow holographic dark energy models in Lyra and general relativity theories. Journal of New Results in Science 13 2 119–127.
IEEE A. Aktaş and S. Aygün, “Barrow holographic dark energy models in Lyra and general relativity theories”, JNRS, vol. 13, no. 2, pp. 119–127, 2024, doi: 10.54187/jnrs.1517322.
ISNAD Aktaş, Arzu - Aygün, Sezgin. “Barrow Holographic Dark Energy Models in Lyra and General Relativity Theories”. Journal of New Results in Science 13/2 (August 2024), 119-127. https://doi.org/10.54187/jnrs.1517322.
JAMA Aktaş A, Aygün S. Barrow holographic dark energy models in Lyra and general relativity theories. JNRS. 2024;13:119–127.
MLA Aktaş, Arzu and Sezgin Aygün. “Barrow Holographic Dark Energy Models in Lyra and General Relativity Theories”. Journal of New Results in Science, vol. 13, no. 2, 2024, pp. 119-27, doi:10.54187/jnrs.1517322.
Vancouver Aktaş A, Aygün S. Barrow holographic dark energy models in Lyra and general relativity theories. JNRS. 2024;13(2):119-27.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).