INVESTIGATION OF THE EFFECTS OF PASSIVE EXOSKELETONS ON WEIGHTLIFTING
Year 2021,
Volume: 17 Issue: 1, 165 - 180, 19.04.2021
Zeynep Cansu Türkselçi
,
Adnan Akkurt
Abstract
Exoskeletons are technologies that are constantly developed to be used in different areas to reduce pain and periodic deformation felt under heavy loads. A great number of researchers and technology companies have been working on developing exoskeleton systems that augment human mobility to achieve several benefits in human life. This study includes current studies of passive exoskeletons which are specifically tested. The effects of passive exoskeleton systems reducing the load on the spine have been investigated for various lifting positions. In addition, reducing the biomechanical loads affecting the user's joints, muscles and soft tissues have been mentioned. In the conclusions section, the importance of researchers from the different branches to work on exoskeleton technology is emphasized.
Supporting Institution
This study is supported by CES Advanced Composites and Technology (CES İleri Kompozit ve Savunma Teknolojileri A.Ş.) which operates in the field of advanced composite materials and ballistic armor with two different companies based in Turkey and UK. The author would like to express deep sense of appreciation and gratitude for their cooperation and help.
References
- Alemi, M. M., Geissinger, J., Simon, A. A., Chang, S. E., & Asbeck, A. T. (2019). A Passive Exoskeleton Reduces Peak and Mean EMG During Symmetric and Asymmetric Lifting. Journal of Electromyography and Kinesiology. https://doi.org/10.1016/j.jelekin.2019.05.003
- Baltrusch, S J, H, V. D. J., Bruijn, S. M., Koopman, A. S., M, V. B. C. A., & Houdijk, H. (2019). The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics, 0(0), 000. https://doi.org/10.1080/00140139.2019.1602288
- Baltrusch, S J, Koopman, J. H. V. D. A. S., Rodriguez, M. B. N. C., & Babič, G. J. (2019). SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. European Journal of Applied Physiology, 0123456789. https://doi.org/10.1007/s00421-019-04284-6
- Baltrusch, Saskia J., Van Dieen, J. H., Van Bennekom, C. A. M., & Houdijk, H. (2020). Testing an exoskeleton that helps workers with low-back pain: Less discomfort with the passive spexor trunk device. IEEE Robotics and Automation Magazine, 27(1), 66–76. https://doi.org/10.1109/MRA.2019.2954160
- Fasola, J., Vouga, T., Baud, R., Member, H. B., Bouri, M., & Member, S. (2019). Balance Control Strategies during Standing in a Locked-Ankle Passive Exoskeleton. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 593–598.
- Jia-Yong, Z., Ye, L. I. U., Xin-Min, M. O., Chong-Wei, H. A. N., Xiao-Jing, M., Qiang, L. I., Yue-Jin, W., & Ang, Z. (2020). A preliminary study of the military applications and future of individual exoskeletons. Journal of Physics: Conference Series, 1507(10). https://doi.org/10.1088/1742-6596/1507/10/102044
- Karfidova, A. O., Vasilyev, M. V., & Morozova, I. G. (2020). Modernization of an industrial passive exoskeleton prototype for lower extremities using rapid prototyping technologies. IOP Conference Series: Materials Science and Engineering, 971(5). https://doi.org/10.1088/1757-899X/971/5/052049
- Kim, S., Moore, A., Srinivasan, D., Akanmu, A., Barr, A., Harris-Adamson, C., Rempel, D. M., & Nussbaum, M. A. (2019). Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 185–191. https://doi.org/10.1080/24725838.2018.1561557
- Koopman, A. S., Kingma, I., Looze, M. P. De, & Dieën, J. H. Van. (2019). Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Journal of Biomechanics, xxxx, 109486. https://doi.org/10.1016/j.jbiomech.2019.109486
- Lovrenovic, Z., & Doumit, M. (2019). Development and testing of a passive Walking Assist Exoskeleton. Integrative Medicine Research, 1–12. https://doi.org/10.1016/j.bbe.2019.01.002
- Luger, T., Seibt, R., Cobb, T. J., Rieger, M. A., & Steinhilber, B. (2019). Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Applied Ergonomics, 80(May), 152–160. https://doi.org/10.1016/j.apergo.2019.05.018
- Pardoel, S., & Doumit, M. (2019). Development and testing of a passive ankle exoskeleton. Integrative Medicine Research, 39(3), 902–913. https://doi.org/10.1016/j.bbe.2019.08.007
- Sawicki, G. S., Beck, O. N., Kang, I., & Young, A. J. (2020). The exoskeleton expansion: Improving walking and running economy. Journal of NeuroEngineering and Rehabilitation, 17(1), 1–9. https://doi.org/10.1186/s12984-020-00663-9
- Wei, W., Wang, W., Qu, Z., Gu, J., Lin, X., & Yue, C. (2019). The effects of a passive exoskeleton on muscle activity and metabolic cost of energy. Advanced Robotics, 0(0), 1–9. https://doi.org/10.1080/01691864.2019.1707708
- Xiong, C., Zhou, T., Zhou, L., Wei, T., & Chen, W. (2019). Multi-articular passive exoskeleton for reducing the metabolic cost during human walking. 2019 Wearable Robotics Association Conference, WearRAcon 2019, 63–67. https://doi.org/10.1109/WEARRACON.2019.8719401
- Zhou, L., Chen, W., Chen, W., Bai, S., Zhang, J., & Wang, J. (2020). Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mechanism and Machine Theory, 150, 103840. https://doi.org/10.1016/j.mechmachtheory.2020.103840
PASİF DIŞ İSKELETLERİN AĞIRLIK KALDIRMAYA ETKİLERİNİN ARAŞTIRILMASI
Year 2021,
Volume: 17 Issue: 1, 165 - 180, 19.04.2021
Zeynep Cansu Türkselçi
,
Adnan Akkurt
Abstract
Dış iskeletler, ağır yükler altında hissedilen ağrı ve periyodik deformasyonu azaltmak için farklı alanlarda kullanılmak üzere sürekli geliştirilen teknolojilerdir. İnsan yaşamında çeşitli faydalar elde etmek amacıyla, insan hareketliliğini artıran dış iskelet sistemleri geliştirmek için çok sayıda araştırmacı ve teknoloji firması bu konuda çalışmaktadır. Bu çalışma, pasif dış iskeletler üzerine yapılan güncel çalışmaları içermektedir. Pasif dış iskelet sistemlerinin omurga üzerindeki yükü azaltmasının etkileri, çeşitli kaldırma pozisyonları için araştırılmıştır. Ayrıca kullanıcının eklem, kas ve yumuşak dokularına etki eden biyomekanik yüklerin azaltılmasından bahsedilmiştir. Sonuçlar kısmında, farklı branşlardan araştırmacıların dış iskelet teknolojisi üzerinde çalışmasının önemi vurgulanmıştır.
References
- Alemi, M. M., Geissinger, J., Simon, A. A., Chang, S. E., & Asbeck, A. T. (2019). A Passive Exoskeleton Reduces Peak and Mean EMG During Symmetric and Asymmetric Lifting. Journal of Electromyography and Kinesiology. https://doi.org/10.1016/j.jelekin.2019.05.003
- Baltrusch, S J, H, V. D. J., Bruijn, S. M., Koopman, A. S., M, V. B. C. A., & Houdijk, H. (2019). The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking. Ergonomics, 0(0), 000. https://doi.org/10.1080/00140139.2019.1602288
- Baltrusch, S J, Koopman, J. H. V. D. A. S., Rodriguez, M. B. N. C., & Babič, G. J. (2019). SPEXOR passive spinal exoskeleton decreases metabolic cost during symmetric repetitive lifting. European Journal of Applied Physiology, 0123456789. https://doi.org/10.1007/s00421-019-04284-6
- Baltrusch, Saskia J., Van Dieen, J. H., Van Bennekom, C. A. M., & Houdijk, H. (2020). Testing an exoskeleton that helps workers with low-back pain: Less discomfort with the passive spexor trunk device. IEEE Robotics and Automation Magazine, 27(1), 66–76. https://doi.org/10.1109/MRA.2019.2954160
- Fasola, J., Vouga, T., Baud, R., Member, H. B., Bouri, M., & Member, S. (2019). Balance Control Strategies during Standing in a Locked-Ankle Passive Exoskeleton. 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), 593–598.
- Jia-Yong, Z., Ye, L. I. U., Xin-Min, M. O., Chong-Wei, H. A. N., Xiao-Jing, M., Qiang, L. I., Yue-Jin, W., & Ang, Z. (2020). A preliminary study of the military applications and future of individual exoskeletons. Journal of Physics: Conference Series, 1507(10). https://doi.org/10.1088/1742-6596/1507/10/102044
- Karfidova, A. O., Vasilyev, M. V., & Morozova, I. G. (2020). Modernization of an industrial passive exoskeleton prototype for lower extremities using rapid prototyping technologies. IOP Conference Series: Materials Science and Engineering, 971(5). https://doi.org/10.1088/1757-899X/971/5/052049
- Kim, S., Moore, A., Srinivasan, D., Akanmu, A., Barr, A., Harris-Adamson, C., Rempel, D. M., & Nussbaum, M. A. (2019). Potential of Exoskeleton Technologies to Enhance Safety, Health, and Performance in Construction: Industry Perspectives and Future Research Directions. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 185–191. https://doi.org/10.1080/24725838.2018.1561557
- Koopman, A. S., Kingma, I., Looze, M. P. De, & Dieën, J. H. Van. (2019). Effects of a passive back exoskeleton on the mechanical loading of the low-back during symmetric lifting. Journal of Biomechanics, xxxx, 109486. https://doi.org/10.1016/j.jbiomech.2019.109486
- Lovrenovic, Z., & Doumit, M. (2019). Development and testing of a passive Walking Assist Exoskeleton. Integrative Medicine Research, 1–12. https://doi.org/10.1016/j.bbe.2019.01.002
- Luger, T., Seibt, R., Cobb, T. J., Rieger, M. A., & Steinhilber, B. (2019). Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Applied Ergonomics, 80(May), 152–160. https://doi.org/10.1016/j.apergo.2019.05.018
- Pardoel, S., & Doumit, M. (2019). Development and testing of a passive ankle exoskeleton. Integrative Medicine Research, 39(3), 902–913. https://doi.org/10.1016/j.bbe.2019.08.007
- Sawicki, G. S., Beck, O. N., Kang, I., & Young, A. J. (2020). The exoskeleton expansion: Improving walking and running economy. Journal of NeuroEngineering and Rehabilitation, 17(1), 1–9. https://doi.org/10.1186/s12984-020-00663-9
- Wei, W., Wang, W., Qu, Z., Gu, J., Lin, X., & Yue, C. (2019). The effects of a passive exoskeleton on muscle activity and metabolic cost of energy. Advanced Robotics, 0(0), 1–9. https://doi.org/10.1080/01691864.2019.1707708
- Xiong, C., Zhou, T., Zhou, L., Wei, T., & Chen, W. (2019). Multi-articular passive exoskeleton for reducing the metabolic cost during human walking. 2019 Wearable Robotics Association Conference, WearRAcon 2019, 63–67. https://doi.org/10.1109/WEARRACON.2019.8719401
- Zhou, L., Chen, W., Chen, W., Bai, S., Zhang, J., & Wang, J. (2020). Design of a passive lower limb exoskeleton for walking assistance with gravity compensation. Mechanism and Machine Theory, 150, 103840. https://doi.org/10.1016/j.mechmachtheory.2020.103840