Research Article
BibTex RIS Cite

Statistical Convergence in $L$-Fuzzy Metric Spaces

Year 2024, , 83 - 91, 31.12.2024
https://doi.org/10.53570/jnt.1586147

Abstract

Statistical convergence, defined in terms of the natural density of positive integers, has been studied in many different spaces, such as intuitionistic fuzzy metric spaces, partial metric spaces, and $L$-fuzzy normed spaces. The main goal of this study is to define statistical convergence in $L$-fuzzy metric spaces ($L$-FMSs), one of the essential tools for modeling uncertainty in everyday life. Furthermore, this paper introduces the concept of statistical Cauchy sequences and investigates its relation with statistical convergence. Then, it defines statistically complete $L$-FMSs and analyzes some of their basic properties. Finally, the paper inquires the need for further research.

References

  • L. A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.
  • I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (5) (1975) 336-344.
  • O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (3) (1984) 215-229.
  • A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (3) (1994) 395-399.
  • V. Gregori, A. Lopez-Crevillen, S. Morillas, A. Sapena, On convergence in fuzzy metric spaces, Topology and Its Applications 156 (18) (2009) 3002-3006.
  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986) 87-96.
  • H. J. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (5) (2004) 1039-1046.
  • R. Saadati, A. Razani, H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons & Fractals 33 (2) (2007) 358-363.
  • R. Saadati, On the L-fuzzy topological spaces, Chaos, Solitons & Fractals 37 (5) (2008) 1419-1426.
  • H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (3-4) (1951) 241-244.
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicae 2 (1) (1951) 73-74.
  • A. R. Freedman, J. J. Sember, Densities and summability, Pacific Journal of Mathematics 95 (2) (1981) 293-305.
  • T. Salat, On statistically convergent sequences of real numbers, Mathematica Slovaca 30 (2) (1980) 139-150.
  • J. A. Fridy, On statistical convergence, Analysis 5 (4) (1985) 301-314.
  • J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1-2) (1988) 47-64.
  • M. Mursaleen, S. A. Mohiuddine, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288 (2003) 117-132.
  • J. Connor, R-type summability methods, Cauchy criteria, P-sets and statistical convergence}, Proceedings of the American Mathematical Society 115 (2) (1992) 319-327.
  • S. A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, International Journal of General Systems 48 (5) (2019) 492-506.
  • A. D. Gadiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics 32 (1) (2002) 129-138.
  • C. Li, Y. Zhang, J. Zhang, On statistical convergence in fuzzy metric spaces, Journal of Intelligent and Fuzzy Systems 39 (3) (2020) 3987-3993.
  • R. Savaş, On double statistical convergence in fuzzy metric spaces, in: 8th International Conference on Recent Advances in Pure and Applied Mathematics, Muğla, 2021, pp. 234-243.
  • B. Pazar Varol, Statistically convergent sequences in intuitionistic fuzzy metric spaces, Axioms 11 (4) (2022) 159 7 pages.
  • A. Özcan, G. Karabacak, S. Bulut, A. Or, Statistical convergence of double sequences in intuitionistic fuzzy metric spaces, Journal of New Theory (43) (2023) 1-10.
  • A. Özcan, G. Karabacak, A. Or, $\lambda$-statistical convergence in intuitionistic fuzzy metric spaces, in F. Gürbüz (Ed.), Academic Researches in Mathematics and Science, Özgür Publications, Gaziantep, 2023, Ch. 3, pp. 31-41.
  • J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1) (1967) 145-174.
  • G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2) (2003) 227-235.
  • C. Cornelis, G. Deschrijver, E. E. Kerre, Classification of intuitionistic fuzzy implicators: An algebraic approach, in H. J. Caulfield, S.-H. Chen, H.-D. Cheng, R. J. Duro, V. G. Honavar, E. E. Kerre, M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, Y. Yang (Eds.): Joint Conference on Information Sciences, North Carolina, 2002, pp. 105-108.
Year 2024, , 83 - 91, 31.12.2024
https://doi.org/10.53570/jnt.1586147

Abstract

References

  • L. A. Zadeh, Fuzzy sets, Information and Control 8 (3) (1965) 338-353.
  • I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (5) (1975) 336-344.
  • O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (3) (1984) 215-229.
  • A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (3) (1994) 395-399.
  • V. Gregori, A. Lopez-Crevillen, S. Morillas, A. Sapena, On convergence in fuzzy metric spaces, Topology and Its Applications 156 (18) (2009) 3002-3006.
  • K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986) 87-96.
  • H. J. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (5) (2004) 1039-1046.
  • R. Saadati, A. Razani, H. Adibi, A common fixed point theorem in L-fuzzy metric spaces, Chaos, Solitons & Fractals 33 (2) (2007) 358-363.
  • R. Saadati, On the L-fuzzy topological spaces, Chaos, Solitons & Fractals 37 (5) (2008) 1419-1426.
  • H. Fast, Sur la convergence statistique, Colloquium Mathematicae 2 (3-4) (1951) 241-244.
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathematicae 2 (1) (1951) 73-74.
  • A. R. Freedman, J. J. Sember, Densities and summability, Pacific Journal of Mathematics 95 (2) (1981) 293-305.
  • T. Salat, On statistically convergent sequences of real numbers, Mathematica Slovaca 30 (2) (1980) 139-150.
  • J. A. Fridy, On statistical convergence, Analysis 5 (4) (1985) 301-314.
  • J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1-2) (1988) 47-64.
  • M. Mursaleen, S. A. Mohiuddine, Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications 288 (2003) 117-132.
  • J. Connor, R-type summability methods, Cauchy criteria, P-sets and statistical convergence}, Proceedings of the American Mathematical Society 115 (2) (1992) 319-327.
  • S. A. Mohiuddine, A. Asiri, B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, International Journal of General Systems 48 (5) (2019) 492-506.
  • A. D. Gadiev, C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics 32 (1) (2002) 129-138.
  • C. Li, Y. Zhang, J. Zhang, On statistical convergence in fuzzy metric spaces, Journal of Intelligent and Fuzzy Systems 39 (3) (2020) 3987-3993.
  • R. Savaş, On double statistical convergence in fuzzy metric spaces, in: 8th International Conference on Recent Advances in Pure and Applied Mathematics, Muğla, 2021, pp. 234-243.
  • B. Pazar Varol, Statistically convergent sequences in intuitionistic fuzzy metric spaces, Axioms 11 (4) (2022) 159 7 pages.
  • A. Özcan, G. Karabacak, S. Bulut, A. Or, Statistical convergence of double sequences in intuitionistic fuzzy metric spaces, Journal of New Theory (43) (2023) 1-10.
  • A. Özcan, G. Karabacak, A. Or, $\lambda$-statistical convergence in intuitionistic fuzzy metric spaces, in F. Gürbüz (Ed.), Academic Researches in Mathematics and Science, Özgür Publications, Gaziantep, 2023, Ch. 3, pp. 31-41.
  • J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1) (1967) 145-174.
  • G. Deschrijver, E. E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems 133 (2) (2003) 227-235.
  • C. Cornelis, G. Deschrijver, E. E. Kerre, Classification of intuitionistic fuzzy implicators: An algebraic approach, in H. J. Caulfield, S.-H. Chen, H.-D. Cheng, R. J. Duro, V. G. Honavar, E. E. Kerre, M. Lu, M. G. Romay, T. K. Shih, D. Ventura, P. P. Wang, Y. Yang (Eds.): Joint Conference on Information Sciences, North Carolina, 2002, pp. 105-108.
There are 27 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Article
Authors

Ahmet Çakı 0009-0004-4118-6179

Aykut Or 0000-0001-5279-0057

Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date November 15, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024

Cite

APA Çakı, A., & Or, A. (2024). Statistical Convergence in $L$-Fuzzy Metric Spaces. Journal of New Theory(49), 83-91. https://doi.org/10.53570/jnt.1586147
AMA Çakı A, Or A. Statistical Convergence in $L$-Fuzzy Metric Spaces. JNT. December 2024;(49):83-91. doi:10.53570/jnt.1586147
Chicago Çakı, Ahmet, and Aykut Or. “Statistical Convergence in $L$-Fuzzy Metric Spaces”. Journal of New Theory, no. 49 (December 2024): 83-91. https://doi.org/10.53570/jnt.1586147.
EndNote Çakı A, Or A (December 1, 2024) Statistical Convergence in $L$-Fuzzy Metric Spaces. Journal of New Theory 49 83–91.
IEEE A. Çakı and A. Or, “Statistical Convergence in $L$-Fuzzy Metric Spaces”, JNT, no. 49, pp. 83–91, December 2024, doi: 10.53570/jnt.1586147.
ISNAD Çakı, Ahmet - Or, Aykut. “Statistical Convergence in $L$-Fuzzy Metric Spaces”. Journal of New Theory 49 (December 2024), 83-91. https://doi.org/10.53570/jnt.1586147.
JAMA Çakı A, Or A. Statistical Convergence in $L$-Fuzzy Metric Spaces. JNT. 2024;:83–91.
MLA Çakı, Ahmet and Aykut Or. “Statistical Convergence in $L$-Fuzzy Metric Spaces”. Journal of New Theory, no. 49, 2024, pp. 83-91, doi:10.53570/jnt.1586147.
Vancouver Çakı A, Or A. Statistical Convergence in $L$-Fuzzy Metric Spaces. JNT. 2024(49):83-91.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).