Research Article
BibTex RIS Cite
Year 2021, , 64 - 74, 30.09.2021
https://doi.org/10.53570/jnt.971924

Abstract

References

  • J. A. Gallian, Contemporary Abstract Algebra, 5th edition, Houghton Mifflin Co., Boston, 1998.
  • J. T. Cross, The Euler’s φ-function in the Gaussian Integers, American Mathematical Monthly Journal 55 (1983) 518–528.
  • J. L. Smith, J. A. Gallian, Factoring Finite Factor Rings, Mathematics Magazine 58 (1985) 93–95.
  • A. N. El-Kassar, H. Y. Chehade, D. Zatout, Quotient Rings of Polynomials over Finite Fields with Cyclic Groups of units, Proceedings of the International Conference on Research Trends in Science and Technology, RTST2002, Lebanese American University, Beirut Lebanon (2002) 257–266.
  • A. N. El-Kassar, H. Y. Chehade, Generalized Group of Units, Mathematica Balkanica, New Series 20 (2006) 275–286.
  • A. A. Allan, M. J. Dunne, J. R. Jack, J. C. Lynd, H. W. Ellingsen, Classification of the Group of Units in the Gaussian Integers Modulo N*, Pi Mu Epsilon Journal 12 (9) (2008) 513–519.
  • W. K. Buck, Cyclic Rings, Master’s Thesis, Eastern Illinois University: The Keep (2004).
  • T. W. Hungerford, Algebra: Graduate Texts in Mathematics, Springer, New York, 2003.
  • W. M. Fakieh, S. K. Nauman, Reversible Rings with Involutions and Some Minimalities, The Scientific World Journal, Hindawi Publishing Corporation 2013 (2013) 1–8.
  • I. N. Herstein, S. Montgomery, A Note on Division Rings with Involutions, Michigan Mathematical Journal 18 (1) (1971) 75–79.
  • D. I. C. Mendes, A Note on Involution Rings, Miskolc Mathematical Notes 10 (2) (2009) 155–162.
  • W. M. Fakieh, Symmetric Rings with Involutions, British Journal of Mathematics and Computer Science 8 (6) (2015) 492–505.
  • T. Chalapathi, R. V. M. S. S. K. Kumar, Self-Additive Inverse Elements of Neutrosophic Rings and Fields, Annals of Pure and Applied Mathematics 13 (1) (2017) 63–72.
  • V. K. Khanna, S. K. Bhambri, A Course in Abstract Algebra, 2nd Edition, Vikas Publishing House Pvt. Ltd, 1998.
  • D. Suzanne, How Many Solutions Does x^2+1=0 Have? An Abstract Algebra Project, PRIMUS Journal 10 (2) (2007) 111–122.
  • G. Dresden, W. M. Dymacek, Finding Factors of Factor Rings over the Gaussian Integers, The American Mathematical Monthly Journal 112 (7) (2018) 602–611.
  • T. Andreescu, D. Andrica, I. Cucurezean, An Introduction to Diophantine Equations: A Problem-Based Approach, Springer, New York, 2010.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition, 1989.

Enumeration of Involutions of Finite Rings

Year 2021, , 64 - 74, 30.09.2021
https://doi.org/10.53570/jnt.971924

Abstract

In this paper, we study a special class of elements in the finite commutative rings called involutions. An involution of a ring R is an element with the property that x^2-1=0 for some x in R. This study describes both the implementation and enumeration of the involutions of various rings, such as cyclic rings, non-cyclic rings, zero-rings, finite fields, and especially rings of Gaussian integers. The paper begins with simple well-known results of an equation x^2-1=0 over the finite commutative ring R. It provides a concrete setting to enumerate the involutions of the finite cyclic and non-cyclic rings R, along with the isomorphic relation I(R)≅Z_2^k.

References

  • J. A. Gallian, Contemporary Abstract Algebra, 5th edition, Houghton Mifflin Co., Boston, 1998.
  • J. T. Cross, The Euler’s φ-function in the Gaussian Integers, American Mathematical Monthly Journal 55 (1983) 518–528.
  • J. L. Smith, J. A. Gallian, Factoring Finite Factor Rings, Mathematics Magazine 58 (1985) 93–95.
  • A. N. El-Kassar, H. Y. Chehade, D. Zatout, Quotient Rings of Polynomials over Finite Fields with Cyclic Groups of units, Proceedings of the International Conference on Research Trends in Science and Technology, RTST2002, Lebanese American University, Beirut Lebanon (2002) 257–266.
  • A. N. El-Kassar, H. Y. Chehade, Generalized Group of Units, Mathematica Balkanica, New Series 20 (2006) 275–286.
  • A. A. Allan, M. J. Dunne, J. R. Jack, J. C. Lynd, H. W. Ellingsen, Classification of the Group of Units in the Gaussian Integers Modulo N*, Pi Mu Epsilon Journal 12 (9) (2008) 513–519.
  • W. K. Buck, Cyclic Rings, Master’s Thesis, Eastern Illinois University: The Keep (2004).
  • T. W. Hungerford, Algebra: Graduate Texts in Mathematics, Springer, New York, 2003.
  • W. M. Fakieh, S. K. Nauman, Reversible Rings with Involutions and Some Minimalities, The Scientific World Journal, Hindawi Publishing Corporation 2013 (2013) 1–8.
  • I. N. Herstein, S. Montgomery, A Note on Division Rings with Involutions, Michigan Mathematical Journal 18 (1) (1971) 75–79.
  • D. I. C. Mendes, A Note on Involution Rings, Miskolc Mathematical Notes 10 (2) (2009) 155–162.
  • W. M. Fakieh, Symmetric Rings with Involutions, British Journal of Mathematics and Computer Science 8 (6) (2015) 492–505.
  • T. Chalapathi, R. V. M. S. S. K. Kumar, Self-Additive Inverse Elements of Neutrosophic Rings and Fields, Annals of Pure and Applied Mathematics 13 (1) (2017) 63–72.
  • V. K. Khanna, S. K. Bhambri, A Course in Abstract Algebra, 2nd Edition, Vikas Publishing House Pvt. Ltd, 1998.
  • D. Suzanne, How Many Solutions Does x^2+1=0 Have? An Abstract Algebra Project, PRIMUS Journal 10 (2) (2007) 111–122.
  • G. Dresden, W. M. Dymacek, Finding Factors of Factor Rings over the Gaussian Integers, The American Mathematical Monthly Journal 112 (7) (2018) 602–611.
  • T. Andreescu, D. Andrica, I. Cucurezean, An Introduction to Diophantine Equations: A Problem-Based Approach, Springer, New York, 2010.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer International Student Edition, 1989.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Sajana Shaık 0000-0003-1385-8842

Chalapathi Tekurı This is me 0000-0003-3382-0542

Publication Date September 30, 2021
Submission Date July 15, 2021
Published in Issue Year 2021

Cite

APA Shaık, S., & Tekurı, C. (2021). Enumeration of Involutions of Finite Rings. Journal of New Theory(36), 64-74. https://doi.org/10.53570/jnt.971924
AMA Shaık S, Tekurı C. Enumeration of Involutions of Finite Rings. JNT. September 2021;(36):64-74. doi:10.53570/jnt.971924
Chicago Shaık, Sajana, and Chalapathi Tekurı. “Enumeration of Involutions of Finite Rings”. Journal of New Theory, no. 36 (September 2021): 64-74. https://doi.org/10.53570/jnt.971924.
EndNote Shaık S, Tekurı C (September 1, 2021) Enumeration of Involutions of Finite Rings. Journal of New Theory 36 64–74.
IEEE S. Shaık and C. Tekurı, “Enumeration of Involutions of Finite Rings”, JNT, no. 36, pp. 64–74, September 2021, doi: 10.53570/jnt.971924.
ISNAD Shaık, Sajana - Tekurı, Chalapathi. “Enumeration of Involutions of Finite Rings”. Journal of New Theory 36 (September 2021), 64-74. https://doi.org/10.53570/jnt.971924.
JAMA Shaık S, Tekurı C. Enumeration of Involutions of Finite Rings. JNT. 2021;:64–74.
MLA Shaık, Sajana and Chalapathi Tekurı. “Enumeration of Involutions of Finite Rings”. Journal of New Theory, no. 36, 2021, pp. 64-74, doi:10.53570/jnt.971924.
Vancouver Shaık S, Tekurı C. Enumeration of Involutions of Finite Rings. JNT. 2021(36):64-7.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).