The sensitivity of the least-squares estimation in a regression model is impacted by multicollinearity and autocorrelation problems. To deal with the multicollinearity, Ridge, Liu, and Ridge-type biased estimators have been presented in the statistical literature. The recently proposed Kibria-Lukman estimator is one of the Ridge-type estimators. The literature has compared the Kibria-Lukman estimator with the others using the mean square error criterion for the linear regression model. It was achieved in a study conducted on the Kibria-Lukman estimator's performance under the first-order autoregressive erroneous autocorrelation. When there is an autocorrelation problem with the second-order, evaluating the performance of the Kibria-Lukman estimator according to the mean square error criterion makes this paper original. The scalar mean square error of the Kibria-Lukman estimator under the second-order autoregressive error structure was evaluated using a Monte Carlo simulation and two real examples, and compared with the Generalized Least-squares, Ridge, and Liu estimators.
The findings revealed that when the variance of the model was small, the mean square error of the Kibria-Lukman estimator gave very close values with the popular biased estimators. As the model variance grew, Kibria-Lukman did not give fairly similar values with popular biased estimators as in the model with small variance. However, according to the mean square error criterion the Kibria-Lukman estimator outperformed the Generalized Least-Squares estimator in all possible cases.
Autocorrelation multicollinearity second-order autoregressive errors Kibria-Lukman estimator
Primary Language | English |
---|---|
Subjects | Applied Mathematics |
Journal Section | Research Article |
Authors | |
Publication Date | December 31, 2022 |
Submission Date | July 4, 2022 |
Published in Issue | Year 2022 Issue: 41 |
As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC). |