Research Article
BibTex RIS Cite
Year 2024, Issue: 46, 40 - 50, 29.03.2024
https://doi.org/10.53570/jnt.1407690

Abstract

References

  • J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, Journées d'Informatique Musicale (1996) 6 pages.
  • A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606-628.
  • T. Koshy, Fibonacci and Lucas numbers with applications, 2nd Edition, John Wiley & Sons, New Jersey, 2019.
  • N. Sloane, The on-line encyclopedia of integer sequences, Mathematicae et Informaticae 41 (2013) 219-234.
  • G. Bilgici, The generalized order-$k$ Narayana's cows numbers, Mathematica Slovaca 66 (4) (2016) 795-802.
  • T. V. Didkivska, M. St'opochkina, Properties of Fibonacci-Narayana numbers, In the World of Mathematics 9 (1) (2003) 29-36.
  • C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Advances in Applied Clifford Algebras 23 (3) (2013) 673-688.
  • T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae 49 (2018) 75-84.
  • J. L. Ramírez, V. F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informatica 45 (2015) 91-105.
  • R. Zatorsky, T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, Journal of Integer Sequences 19 (2) (2016) Article 16.2.2 23 pages.
  • Y. Soykan, On generalized Narayana numbers, International Journal of Advances in Applied Mathematics and Mechanics 7 (3) (2020) 43-56.
  • P.-N. Ng, P.-Y. Lee, Cesáro sequences spaces of non-absolute type, Commentationes Mathematicae (Prace Matematyczne) 20 (2) (1978) 429-433.
  • C.-S. Wang, On Nörlund sequence spaces, Tamkang Journal of Mathematics 9 (1) (1978) 269-274.
  • B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_p$ and $\ell_\infty$, Information Sciences 176 (10) (2006) 1450-1462.
  • M. Şengonül, F. Başar, Some new Cesáro sequence spaces of non-absolute type which include, Soochow Journal of Mathematics 31 (1) (2005) 107-119.
  • M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers & Mathematics with Applications 60 (5) (2010) 1299-1309.
  • S. Erdem, S. Demiriz, A study on strongly almost convergent and strongly almost null binomial double sequence spaces, Fundamental Journal of Mathematics and Applications 4 (4) (2021) 271-279.
  • F. Başar, Summability theory and its applications, 2nd Edition, Chapman and Hall/CRC, New York, 2022.
  • J. Boos, F. P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications 2013 (1) (2013) Article Number 38 15 pages.
  • M. Candan, E. E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics 3 (4) (2015) 67-84.
  • E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear algebra 64 (11) (2016) 2208-2223.
  • M. Karakaş, A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır University Journal of the Institute of Science and Technology 7 (4) (2017) 103-111.
  • M. Karakaş, A. M. Karakaş, A study on Lucas difference sequence spaces $\ell_p(\hat{E}(r, s))$ and $\ell_\infty(\hat{E}(r, s))$, Maejo International Journal of Science and Technology 12 (1) (2018) 70-78.
  • T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-European Journal of Mathematics 14 (06) (2021) 2150095 22 pages.
  • M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, Journal of Mathematical Analysis and Applications 498 (1) (2021) 124925 17 pages.
  • M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra 71 (14) (2023) 2298-2309.
  • M. C. Dağli, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra 71 (11) (2023) 1863-1874.
  • A. Wilansky, Summability through functional analysis, Elsevier, Amsterdam, 2000.
  • A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003) 59-78.
  • M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen Eine Ergebnisübersicht, Mathematische Zeitschrift 154 (1977) 1-16.

On Some New Normed Narayana Sequence Spaces

Year 2024, Issue: 46, 40 - 50, 29.03.2024
https://doi.org/10.53570/jnt.1407690

Abstract

In this paper, we first establish the regular matrix $N$ using Narayana numbers. Then, we create new normed sequence spaces $Z(N)$ using the matrix $ N$ and demonstrate that these spaces are linearly isomorphic to $Z$ where $Z\in\{c_0, c, \ell_p, \ell_\infty\}$. Additionally, we provide inclusion relations for the spaces $c_0(N)$, $c(N)$, $\ell_p(N)$, and $\ell_\infty(N)$. Furthermore, we construct the Schauder bases of the $c_0(N)$, $c(N)$, and $\ell_p(N)$. Finally, we compute the $\alpha$-, $\beta$-, and $\gamma$-duals of these spaces and characterize the classes $(Z(N),X)$ for the certain choice of the sequence space $X$.

References

  • J.-P. Allouche, T. Johnson, Narayana's cows and delayed morphisms, Journées d'Informatique Musicale (1996) 6 pages.
  • A. N. Singh, On the use of series in Hindu mathematics, Osiris 1 (1936) 606-628.
  • T. Koshy, Fibonacci and Lucas numbers with applications, 2nd Edition, John Wiley & Sons, New Jersey, 2019.
  • N. Sloane, The on-line encyclopedia of integer sequences, Mathematicae et Informaticae 41 (2013) 219-234.
  • G. Bilgici, The generalized order-$k$ Narayana's cows numbers, Mathematica Slovaca 66 (4) (2016) 795-802.
  • T. V. Didkivska, M. St'opochkina, Properties of Fibonacci-Narayana numbers, In the World of Mathematics 9 (1) (2003) 29-36.
  • C. Flaut, V. Shpakivskyi, On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions, Advances in Applied Clifford Algebras 23 (3) (2013) 673-688.
  • T. Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae 49 (2018) 75-84.
  • J. L. Ramírez, V. F. Sirvent, A note on the k-Narayana sequence, Annales Mathematicae et Informatica 45 (2015) 91-105.
  • R. Zatorsky, T. Goy, Parapermanents of triangular matrices and some general theorems on number sequences, Journal of Integer Sequences 19 (2) (2016) Article 16.2.2 23 pages.
  • Y. Soykan, On generalized Narayana numbers, International Journal of Advances in Applied Mathematics and Mechanics 7 (3) (2020) 43-56.
  • P.-N. Ng, P.-Y. Lee, Cesáro sequences spaces of non-absolute type, Commentationes Mathematicae (Prace Matematyczne) 20 (2) (1978) 429-433.
  • C.-S. Wang, On Nörlund sequence spaces, Tamkang Journal of Mathematics 9 (1) (1978) 269-274.
  • B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_p$ and $\ell_\infty$, Information Sciences 176 (10) (2006) 1450-1462.
  • M. Şengonül, F. Başar, Some new Cesáro sequence spaces of non-absolute type which include, Soochow Journal of Mathematics 31 (1) (2005) 107-119.
  • M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers & Mathematics with Applications 60 (5) (2010) 1299-1309.
  • S. Erdem, S. Demiriz, A study on strongly almost convergent and strongly almost null binomial double sequence spaces, Fundamental Journal of Mathematics and Applications 4 (4) (2021) 271-279.
  • F. Başar, Summability theory and its applications, 2nd Edition, Chapman and Hall/CRC, New York, 2022.
  • J. Boos, F. P. Cass, Classical and modern methods in summability, Oxford University Press, Oxford, 2000.
  • E. E. Kara, Some topological and geometrical properties of new Banach sequence spaces, Journal of Inequalities and Applications 2013 (1) (2013) Article Number 38 15 pages.
  • M. Candan, E. E. Kara, A study of topological and geometrical characteristics of new Banach sequence spaces, Gulf Journal of Mathematics 3 (4) (2015) 67-84.
  • E. E. Kara, M. Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear algebra 64 (11) (2016) 2208-2223.
  • M. Karakaş, A. M. Karakaş, New Banach sequence spaces that is defined by the aid of Lucas numbers, Iğdır University Journal of the Institute of Science and Technology 7 (4) (2017) 103-111.
  • M. Karakaş, A. M. Karakaş, A study on Lucas difference sequence spaces $\ell_p(\hat{E}(r, s))$ and $\ell_\infty(\hat{E}(r, s))$, Maejo International Journal of Science and Technology 12 (1) (2018) 70-78.
  • T. Yaying, B. Hazarika, S. A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-European Journal of Mathematics 14 (06) (2021) 2150095 22 pages.
  • M. İ. Kara, E. E. Kara, Matrix transformations and compact operators on Catalan sequence spaces, Journal of Mathematical Analysis and Applications 498 (1) (2021) 124925 17 pages.
  • M. Karakaş, On the sequence spaces involving Bell numbers, Linear and Multilinear Algebra 71 (14) (2023) 2298-2309.
  • M. C. Dağli, A new almost convergent sequence space defined by Schröder matrix, Linear and Multilinear Algebra 71 (11) (2023) 1863-1874.
  • A. Wilansky, Summability through functional analysis, Elsevier, Amsterdam, 2000.
  • A. M. Jarrah, E. Malkowsky, Ordinary, absolute and strong summability and matrix transformations, Filomat 17 (2003) 59-78.
  • M. Stieglitz, H. Tietz, Matrix transformationen von Folgenräumen Eine Ergebnisübersicht, Mathematische Zeitschrift 154 (1977) 1-16.
There are 31 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Article
Authors

Hacer Bilgin Ellidokuzoğlu 0000-0003-1658-201X

Early Pub Date March 28, 2024
Publication Date March 29, 2024
Submission Date December 20, 2023
Acceptance Date February 29, 2024
Published in Issue Year 2024 Issue: 46

Cite

APA Bilgin Ellidokuzoğlu, H. (2024). On Some New Normed Narayana Sequence Spaces. Journal of New Theory(46), 40-50. https://doi.org/10.53570/jnt.1407690
AMA Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT. March 2024;(46):40-50. doi:10.53570/jnt.1407690
Chicago Bilgin Ellidokuzoğlu, Hacer. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory, no. 46 (March 2024): 40-50. https://doi.org/10.53570/jnt.1407690.
EndNote Bilgin Ellidokuzoğlu H (March 1, 2024) On Some New Normed Narayana Sequence Spaces. Journal of New Theory 46 40–50.
IEEE H. Bilgin Ellidokuzoğlu, “On Some New Normed Narayana Sequence Spaces”, JNT, no. 46, pp. 40–50, March 2024, doi: 10.53570/jnt.1407690.
ISNAD Bilgin Ellidokuzoğlu, Hacer. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory 46 (March 2024), 40-50. https://doi.org/10.53570/jnt.1407690.
JAMA Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT. 2024;:40–50.
MLA Bilgin Ellidokuzoğlu, Hacer. “On Some New Normed Narayana Sequence Spaces”. Journal of New Theory, no. 46, 2024, pp. 40-50, doi:10.53570/jnt.1407690.
Vancouver Bilgin Ellidokuzoğlu H. On Some New Normed Narayana Sequence Spaces. JNT. 2024(46):40-5.


TR Dizin 26024

Electronic Journals Library (EZB) 13651



Academindex 28993

SOBİAD 30256                                                   

Scilit 20865                                                  


29324 As of 2021, JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).