Research Article
BibTex RIS Cite
Year 2025, Issue: 50, 56 - 67, 28.03.2025
https://doi.org/10.53570/jnt.1637087

Abstract

References

  • H. H. Gulec , N. Taskara, On the $(s,t)$-Pell and $(s,t)$-Pell-Lucas sequences and their matrix representations, Applied Mathematics Letters 25 (10) (2012) 1554–1559.
  • S. Uygun, Z. S. Açar, Notes on $(s,t)$-Pell and $(s,t)$-Pell Lucas matrix sequences, Asian Journal of Mathematics and Physics 7 (2023) 1.
  • A. F. Horadam, Pell identities, Fibonacci Quarterly 9 (3) (1971) 245–252.
  • T. Koshy, Pell and Pell-Lucas numbers with applications, Springer, 2014.
  • H. Prodinger, Some information about the binomial transform, Fibonacci Quarterly 32 (5) (1994) 412–415.
  • K. W. Chen, Identities from the binomial transform, Journal of Number Theory 124 (1) (2007) 142–150.
  • S. Falcon, A. Plaza, Binomial transforms of the $k$-Fibonacci sequence, International Journal of Nonlinear Sciences & Numerical Simulation 10 (11-12) (2009) 1527–1538.
  • P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the $k$-Lucas sequences and its properties, Journal of Mathematics and Computer Science 8 (2014) 81–92.
  • N. Yilmaz, N. Taskara, Binomial transforms of the Padovan and Perrin matrix sequences, Abstract and Applied Analysis 2013 (1) 497418.
  • S. Uygun, A. Erdoğdu, Binomial transforms of $k$-Jacobsthal sequences, Journal of Mathematical and Computational Science 7 (6) (2017) 1100–1114.
  • C. Kızılateş, N. Tuglu, B. Çekim, Binomial transform of quadrapell sequences and quadrapell matrix sequences, Journal of Science and Arts 1 (38) (2017) 69–80.
  • S. Uygun, The binomial transforms of the generalized $(s,t)$-Jacobsthal matrix sequence, International Journal of Advances in Applied Mathematics and Mechanics 6 (3) (2019) 14–20.
  • F. Kaplan, A. Özkoç Öztürk, On the binomial transforms of the Horadam quaternion sequences, Mathematical Methods in the Applied Sciences 45 (18) (2021) 12009–12022.
  • Y. Kwon, Binomial transforms of the modified $k$-Fibonacci-like sequence, International Journal of Mathematics and Computer Science 14 (1) (2019) 47–59.
  • Y. Soykan, Binomial transform of the generalized Tribonacci sequence, Asian Research Journal of Mathematics 16 (10) (2020) 26–55.
  • Y. Soykan, Binomial transform of the generalized third order Pell sequence, Communications in Mathematics and Applications 12 (1) (2021) 71–94.
  • Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Archives of Current Research International 21 (6) (2021) 9–31.
  • Y. Soykan, On binomial transform of the generalized fifth order Pell sequence, Asian Journal of Advanced Research and Reports 15 (9) (2021) 8–29.
  • Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline Journal of Mathematical Sciences 7 (1) (2021) 77–111.
  • Y. Soykan, Binomial transform of the generalized Pentanacci sequence, Asian Research Journal of Current Science 3 (1) (2021) 209–231.
  • Y. Soykan, E. Taşdemir, N. Özmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, International Journal of Nonlinear Analysis and Applications 14 (1) (2021) 643–666.

On Various Binomial Transforms of the Generalized Pell Matrix Sequences

Year 2025, Issue: 50, 56 - 67, 28.03.2025
https://doi.org/10.53570/jnt.1637087

Abstract

The main aim of this study is to apply different binomial transforms to the generalized Pell matrix sequences. We define the binomial, $s$-binomial, rising, and falling transforms for the generalized Pell matrix sequence. We establish some algebraic properties, such as the recurrent formulas, Binet formulas, generating functions, and sum formulas, for binomial transforms of the generalized Pell matrix sequences. Finally, we discuss the need for further research.

References

  • H. H. Gulec , N. Taskara, On the $(s,t)$-Pell and $(s,t)$-Pell-Lucas sequences and their matrix representations, Applied Mathematics Letters 25 (10) (2012) 1554–1559.
  • S. Uygun, Z. S. Açar, Notes on $(s,t)$-Pell and $(s,t)$-Pell Lucas matrix sequences, Asian Journal of Mathematics and Physics 7 (2023) 1.
  • A. F. Horadam, Pell identities, Fibonacci Quarterly 9 (3) (1971) 245–252.
  • T. Koshy, Pell and Pell-Lucas numbers with applications, Springer, 2014.
  • H. Prodinger, Some information about the binomial transform, Fibonacci Quarterly 32 (5) (1994) 412–415.
  • K. W. Chen, Identities from the binomial transform, Journal of Number Theory 124 (1) (2007) 142–150.
  • S. Falcon, A. Plaza, Binomial transforms of the $k$-Fibonacci sequence, International Journal of Nonlinear Sciences & Numerical Simulation 10 (11-12) (2009) 1527–1538.
  • P. Bhadouria, D. Jhala, B. Singh, Binomial transforms of the $k$-Lucas sequences and its properties, Journal of Mathematics and Computer Science 8 (2014) 81–92.
  • N. Yilmaz, N. Taskara, Binomial transforms of the Padovan and Perrin matrix sequences, Abstract and Applied Analysis 2013 (1) 497418.
  • S. Uygun, A. Erdoğdu, Binomial transforms of $k$-Jacobsthal sequences, Journal of Mathematical and Computational Science 7 (6) (2017) 1100–1114.
  • C. Kızılateş, N. Tuglu, B. Çekim, Binomial transform of quadrapell sequences and quadrapell matrix sequences, Journal of Science and Arts 1 (38) (2017) 69–80.
  • S. Uygun, The binomial transforms of the generalized $(s,t)$-Jacobsthal matrix sequence, International Journal of Advances in Applied Mathematics and Mechanics 6 (3) (2019) 14–20.
  • F. Kaplan, A. Özkoç Öztürk, On the binomial transforms of the Horadam quaternion sequences, Mathematical Methods in the Applied Sciences 45 (18) (2021) 12009–12022.
  • Y. Kwon, Binomial transforms of the modified $k$-Fibonacci-like sequence, International Journal of Mathematics and Computer Science 14 (1) (2019) 47–59.
  • Y. Soykan, Binomial transform of the generalized Tribonacci sequence, Asian Research Journal of Mathematics 16 (10) (2020) 26–55.
  • Y. Soykan, Binomial transform of the generalized third order Pell sequence, Communications in Mathematics and Applications 12 (1) (2021) 71–94.
  • Y. Soykan, Binomial transform of the generalized fourth order Pell sequence, Archives of Current Research International 21 (6) (2021) 9–31.
  • Y. Soykan, On binomial transform of the generalized fifth order Pell sequence, Asian Journal of Advanced Research and Reports 15 (9) (2021) 8–29.
  • Y. Soykan, Notes on binomial transform of the generalized Narayana sequence, Earthline Journal of Mathematical Sciences 7 (1) (2021) 77–111.
  • Y. Soykan, Binomial transform of the generalized Pentanacci sequence, Asian Research Journal of Current Science 3 (1) (2021) 209–231.
  • Y. Soykan, E. Taşdemir, N. Özmen, On binomial transform of the generalized Jacobsthal-Padovan numbers, International Journal of Nonlinear Analysis and Applications 14 (1) (2021) 643–666.
There are 21 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Article
Authors

Şükran Uygun 0000-0002-7878-2175

Ozan Haklıdır 0009-0005-3449-9342

Publication Date March 28, 2025
Submission Date February 11, 2025
Acceptance Date March 27, 2025
Published in Issue Year 2025 Issue: 50

Cite

APA Uygun, Ş., & Haklıdır, O. (2025). On Various Binomial Transforms of the Generalized Pell Matrix Sequences. Journal of New Theory(50), 56-67. https://doi.org/10.53570/jnt.1637087
AMA Uygun Ş, Haklıdır O. On Various Binomial Transforms of the Generalized Pell Matrix Sequences. JNT. March 2025;(50):56-67. doi:10.53570/jnt.1637087
Chicago Uygun, Şükran, and Ozan Haklıdır. “On Various Binomial Transforms of the Generalized Pell Matrix Sequences”. Journal of New Theory, no. 50 (March 2025): 56-67. https://doi.org/10.53570/jnt.1637087.
EndNote Uygun Ş, Haklıdır O (March 1, 2025) On Various Binomial Transforms of the Generalized Pell Matrix Sequences. Journal of New Theory 50 56–67.
IEEE Ş. Uygun and O. Haklıdır, “On Various Binomial Transforms of the Generalized Pell Matrix Sequences”, JNT, no. 50, pp. 56–67, March 2025, doi: 10.53570/jnt.1637087.
ISNAD Uygun, Şükran - Haklıdır, Ozan. “On Various Binomial Transforms of the Generalized Pell Matrix Sequences”. Journal of New Theory 50 (March 2025), 56-67. https://doi.org/10.53570/jnt.1637087.
JAMA Uygun Ş, Haklıdır O. On Various Binomial Transforms of the Generalized Pell Matrix Sequences. JNT. 2025;:56–67.
MLA Uygun, Şükran and Ozan Haklıdır. “On Various Binomial Transforms of the Generalized Pell Matrix Sequences”. Journal of New Theory, no. 50, 2025, pp. 56-67, doi:10.53570/jnt.1637087.
Vancouver Uygun Ş, Haklıdır O. On Various Binomial Transforms of the Generalized Pell Matrix Sequences. JNT. 2025(50):56-67.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).