Systematic Reviews and Meta Analysis
BibTex RIS Cite
Year 2025, Volume: 03, 29 - 40, 26.03.2025
https://doi.org/10.54709/joebs.1641221

Abstract

References

  • 1. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nature reviews Microbiology. 2010;8(5):317-27.
  • 2. Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nature microbiology. 2017;2:17092.
  • 3. Chavez M, Chen X. Advances in CRISPR therapeutics. 2023;19(1):9-22.
  • 4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, NY). 2007;315(5819):1709-12.
  • 5. Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of molecular biology. 2019;431(1):88-101.
  • 6. Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in perinatology. 2018;42(8):487-500.
  • 7. Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various Aspects of a Gene Editing System-CRISPR-Cas9. 2020;21(24).
  • 8. Roth TL, Marson A. Genetic Disease and Therapy. Annual review of pathology. 2021;16:145-66.
  • 9. Singh S, Raj D, Mathur A, Mani N, Kumar D. Current approaches in CRISPR-Cas systems for hereditary diseases. Progress in molecular biology and translational science. 2025;210:205-29.
  • 10. Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. International journal of molecular sciences. 2017;18(4).
  • 11. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. The Journal of clinical investigation. 2017;127(7):2719-24.
  • 12. Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Human genetics. 2023;142(12):1677-703.
  • 13. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome research. 2014;24(9):1526-33.
  • 14. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England journal of medicine. 2021;384(3):252-60.
  • 15. Aalders J, Léger L, Demolder A, Muiño Mosquera L, Coucke P, Menten B, et al. Generation of human induced pluripotent stem cell line UGENTi001-A from a patient with Marfan syndrome carrying a heterozygous c.7754 T > C variant in FBN1 and the isogenic control UGENT001-A-1 using CRISPR/Cas9 editing. Stem cell research. 2023;67:103036.
  • 16. Li T, Ma B, Yang H, Zhu G, Shu C, Luo M, et al. Generation of a CRISPR/Cas9-corrected-hiPSC (NCCDFWi001-A-1) from a Marfan syndrome patient hiPSC with a heterozygous c.2613A>C variant in the fibrillin 1 (FBN1) gene. Stem cell research. 2021;56:102543.
  • 17. Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. The Journal of clinical investigation. 2021;131(12).
  • 18. Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. 2022;19(3):931-41.
  • 19. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (New York, NY). 2014;345(6201):1184-8.
  • 20. Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, et al. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. The Journal of biological chemistry. 2018;293(18):6883-92.
  • 21. Richards DY, Winn SR, Dudley S, Nygaard S, Mighell TL, Grompe M, et al. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. Molecular therapy Methods & clinical development. 2020;17:234-45.
  • 22. Pan Y, Shen N, Jung-Klawitter S, Betzen C, Hoffmann GF, Hoheisel JD, et al. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Scientific reports. 2016;6:35794.
  • 23. Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert opinion on biological therapy. 2021;21(6):767-80.
  • 24. Wen J, Tao W, Hao S, Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Journal of hematology & oncology. 2017;10(1):119.
  • 25. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(3):556-63.
  • 26. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, et al. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates α1-antitrypsin Deficiency Phenotype. EBioMedicine. 2018;29:104-11.
  • 27. Hung JE, Brewer RA, Elbakr L, Mollica A, Forguson G, Chan WS, et al. Precise template-free correction restores gene function in Tay-Sachs disease while reframing is ineffective. Molecular therapy Nucleic acids. 2025;36(1):102401.
  • 28. Leal AF, Cifuentes J. CRISPR/nCas9-Based Genome Editing on GM2 Gangliosidoses Fibroblasts via Non-Viral Vectors. 2022;23(18).
  • 29. Canda E, Kalkan Uçar S, Çoker M. Biotinidase Deficiency: Prevalence, Impact And Management Strategies. 2020;11:127-33.
  • 30. Hsieh CH, Lee J, Sung HH, Huang YF, Ding YS, Li CY, et al. Novel SLC5A6 mutations lead to B lymphocyte maturation defects with metabolic abnormality rescuable by biotin replenishment. Clinical immunology (Orlando, Fla). 2023;257:109855.
  • 31. Naiki Y, Miyado M, Shindo M, Horikawa R, Hasegawa Y, Katsumata N, et al. Adeno-Associated Virus-Mediated Gene Therapy for Patients' Fibroblasts, Induced Pluripotent Stem Cells, and a Mouse Model of Congenital Adrenal Hyperplasia. Human gene therapy. 2022;33(15-16):801-9.
  • 32. Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, et al. Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Human gene therapy. 2018;29(11):1252-63.
  • 33. Zhang Y, Nishiyama T, Olson EN, Bassel-Duby R. CRISPR/Cas correction of muscular dystrophies. Experimental cell research. 2021;408(1):112844.
  • 34. Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Molecular therapy Methods & clinical development. 2021;20:298-311.
  • 35. Goossens R, van den Boogaard ML. Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. 2019;56(12):828-37.
  • 36. Rajeev M, Ratan C. Hutchinson-Gilford Progeria Syndrome (Hgps) and Application of Gene Therapy Based Crispr/Cas Technology as A Promising Innovative Treatment Approach. 2021;15(4):266-85.
  • 37. Santiago-Fernández O, Osorio FG, Quesada V. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. 2019;25(3):423-6.
  • 38. Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Human gene therapy. 2015;26(2):114-26.
  • 39. Guo G, Moser M, Chifamba L, Julian D, Teierle S, Rajappa P, et al. CRISPR-Cas9-Mediated Correction of TSC2 Pathogenic Variants in iPSCs from Patients with Tuberous Sclerosis Complex Type 2. 2024.
  • 40. Qian J, Guan X. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. 2023;15(679):eadd4666.
  • 41. Cho HY, Yoo M, Pongkulapa T. Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome. 2024;11(24):e2306432.
  • 42. Jung H, Rim YA. Restoration of Osteogenesis by CRISPR/Cas9 Genome Editing of the Mutated COL1A1 Gene in Osteogenesis Imperfecta. 2021;10(14).
  • 43. Yang YS, Sato T, Chaugule S, Ma H, Xie J, Gao G, et al. AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Molecular therapy Nucleic acids. 2024;35(1):102111.
  • 44. Rohn TT, Kim N, Isho NF, Mack JM. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease. Journal of Alzheimer's disease & Parkinsonism. 2018;8(3).
  • 45. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell. 2015;6(5):363-72.
  • 46. Zhang B. CRISPR/Cas gene therapy. Journal of cellular physiology. 2021;236(4):2459-81.
  • 47. Shinwari ZK, Tanveer F, Khalil AT. Ethical Issues Regarding CRISPR Mediated Genome Editing. Current issues in molecular biology. 2018;26:103-10.

CRISPR-Cas9 Teknolojisi ile Genetik Hastalıkların Tedavisi: Yeni Bir Devrim

Year 2025, Volume: 03, 29 - 40, 26.03.2025
https://doi.org/10.54709/joebs.1641221

Abstract

Günümüzde, genetik hastalıkların artması sonucu tedavide yaşanan zorluklar bilim insanlarını yeni tedavi arayışlarına yöneltmiştir. Bu konuda en önemli bilimsel gelişmelerden biri düzenli aralıklarla kümelenmiş kısa palindromik tekrarlarla (CRISPR)/CRISPR ilişkili enzim (Cas) tabanlı genom düzenleme teknolojisinin uygulanmaya başlaması sonucu birçok genetik hastalığın tedavi edilmesinde umut vadeden araçlardan biri haline gelmiştir. CRISPR/Cas daha önce bakterilerde ve arkelerde viral enfeksiyonlara karşı adaptif bağışıklık savunma sisteminden uyarlanmış bir genom düzenleme aracı olarak bilinmekteydi. Bu incelemede CRISPR-Cas9 teknolojisinin kökenini, bugünü ve geleceğini, uygulama alanlarını, genetik hastalıkların tedavisindeki yeri ve önemini, zorluklarını, sınırlıklarını ve bu teknolojinin kullanımı ile ilgili etik kaygıları tartışıyoruz.

References

  • 1. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nature reviews Microbiology. 2010;8(5):317-27.
  • 2. Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nature microbiology. 2017;2:17092.
  • 3. Chavez M, Chen X. Advances in CRISPR therapeutics. 2023;19(1):9-22.
  • 4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, NY). 2007;315(5819):1709-12.
  • 5. Brokowski C, Adli M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of molecular biology. 2019;431(1):88-101.
  • 6. Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in perinatology. 2018;42(8):487-500.
  • 7. Janik E, Niemcewicz M, Ceremuga M, Krzowski L, Saluk-Bijak J, Bijak M. Various Aspects of a Gene Editing System-CRISPR-Cas9. 2020;21(24).
  • 8. Roth TL, Marson A. Genetic Disease and Therapy. Annual review of pathology. 2021;16:145-66.
  • 9. Singh S, Raj D, Mathur A, Mani N, Kumar D. Current approaches in CRISPR-Cas systems for hereditary diseases. Progress in molecular biology and translational science. 2025;210:205-29.
  • 10. Kolli N, Lu M, Maiti P, Rossignol J, Dunbar GL. CRISPR-Cas9 Mediated Gene-Silencing of the Mutant Huntingtin Gene in an In Vitro Model of Huntington's Disease. International journal of molecular sciences. 2017;18(4).
  • 11. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, et al. CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington's disease. The Journal of clinical investigation. 2017;127(7):2719-24.
  • 12. Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Human genetics. 2023;142(12):1677-703.
  • 13. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome research. 2014;24(9):1526-33.
  • 14. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England journal of medicine. 2021;384(3):252-60.
  • 15. Aalders J, Léger L, Demolder A, Muiño Mosquera L, Coucke P, Menten B, et al. Generation of human induced pluripotent stem cell line UGENTi001-A from a patient with Marfan syndrome carrying a heterozygous c.7754 T > C variant in FBN1 and the isogenic control UGENT001-A-1 using CRISPR/Cas9 editing. Stem cell research. 2023;67:103036.
  • 16. Li T, Ma B, Yang H, Zhu G, Shu C, Luo M, et al. Generation of a CRISPR/Cas9-corrected-hiPSC (NCCDFWi001-A-1) from a Marfan syndrome patient hiPSC with a heterozygous c.2613A>C variant in the fibrillin 1 (FBN1) gene. Stem cell research. 2021;56:102543.
  • 17. Tang XY, Xu L, Wang J, Hong Y, Wang Y, Zhu Q, et al. DSCAM/PAK1 pathway suppression reverses neurogenesis deficits in iPSC-derived cerebral organoids from patients with Down syndrome. The Journal of clinical investigation. 2021;131(12).
  • 18. Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. 2022;19(3):931-41.
  • 19. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (New York, NY). 2014;345(6201):1184-8.
  • 20. Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, et al. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. The Journal of biological chemistry. 2018;293(18):6883-92.
  • 21. Richards DY, Winn SR, Dudley S, Nygaard S, Mighell TL, Grompe M, et al. AAV-Mediated CRISPR/Cas9 Gene Editing in Murine Phenylketonuria. Molecular therapy Methods & clinical development. 2020;17:234-45.
  • 22. Pan Y, Shen N, Jung-Klawitter S, Betzen C, Hoffmann GF, Hoheisel JD, et al. CRISPR RNA-guided FokI nucleases repair a PAH variant in a phenylketonuria model. Scientific reports. 2016;6:35794.
  • 23. Graham C, Hart S. CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert opinion on biological therapy. 2021;21(6):767-80.
  • 24. Wen J, Tao W, Hao S, Zu Y. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Journal of hematology & oncology. 2017;10(1):119.
  • 25. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, et al. In Vivo CRISPR/Cas9 Gene Editing Corrects Retinal Dystrophy in the S334ter-3 Rat Model of Autosomal Dominant Retinitis Pigmentosa. Molecular therapy : the journal of the American Society of Gene Therapy. 2016;24(3):556-63.
  • 26. Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, et al. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates α1-antitrypsin Deficiency Phenotype. EBioMedicine. 2018;29:104-11.
  • 27. Hung JE, Brewer RA, Elbakr L, Mollica A, Forguson G, Chan WS, et al. Precise template-free correction restores gene function in Tay-Sachs disease while reframing is ineffective. Molecular therapy Nucleic acids. 2025;36(1):102401.
  • 28. Leal AF, Cifuentes J. CRISPR/nCas9-Based Genome Editing on GM2 Gangliosidoses Fibroblasts via Non-Viral Vectors. 2022;23(18).
  • 29. Canda E, Kalkan Uçar S, Çoker M. Biotinidase Deficiency: Prevalence, Impact And Management Strategies. 2020;11:127-33.
  • 30. Hsieh CH, Lee J, Sung HH, Huang YF, Ding YS, Li CY, et al. Novel SLC5A6 mutations lead to B lymphocyte maturation defects with metabolic abnormality rescuable by biotin replenishment. Clinical immunology (Orlando, Fla). 2023;257:109855.
  • 31. Naiki Y, Miyado M, Shindo M, Horikawa R, Hasegawa Y, Katsumata N, et al. Adeno-Associated Virus-Mediated Gene Therapy for Patients' Fibroblasts, Induced Pluripotent Stem Cells, and a Mouse Model of Congenital Adrenal Hyperplasia. Human gene therapy. 2022;33(15-16):801-9.
  • 32. Zhou M, Hu Z, Qiu L, Zhou T, Feng M, Hu Q, et al. Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Human gene therapy. 2018;29(11):1252-63.
  • 33. Zhang Y, Nishiyama T, Olson EN, Bassel-Duby R. CRISPR/Cas correction of muscular dystrophies. Experimental cell research. 2021;408(1):112844.
  • 34. Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. Molecular therapy Methods & clinical development. 2021;20:298-311.
  • 35. Goossens R, van den Boogaard ML. Intronic SMCHD1 variants in FSHD: testing the potential for CRISPR-Cas9 genome editing. 2019;56(12):828-37.
  • 36. Rajeev M, Ratan C. Hutchinson-Gilford Progeria Syndrome (Hgps) and Application of Gene Therapy Based Crispr/Cas Technology as A Promising Innovative Treatment Approach. 2021;15(4):266-85.
  • 37. Santiago-Fernández O, Osorio FG, Quesada V. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. 2019;25(3):423-6.
  • 38. Osborn MJ, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Human gene therapy. 2015;26(2):114-26.
  • 39. Guo G, Moser M, Chifamba L, Julian D, Teierle S, Rajappa P, et al. CRISPR-Cas9-Mediated Correction of TSC2 Pathogenic Variants in iPSCs from Patients with Tuberous Sclerosis Complex Type 2. 2024.
  • 40. Qian J, Guan X. Multiplex epigenome editing of MECP2 to rescue Rett syndrome neurons. 2023;15(679):eadd4666.
  • 41. Cho HY, Yoo M, Pongkulapa T. Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome. 2024;11(24):e2306432.
  • 42. Jung H, Rim YA. Restoration of Osteogenesis by CRISPR/Cas9 Genome Editing of the Mutated COL1A1 Gene in Osteogenesis Imperfecta. 2021;10(14).
  • 43. Yang YS, Sato T, Chaugule S, Ma H, Xie J, Gao G, et al. AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Molecular therapy Nucleic acids. 2024;35(1):102111.
  • 44. Rohn TT, Kim N, Isho NF, Mack JM. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Alzheimer's Disease. Journal of Alzheimer's disease & Parkinsonism. 2018;8(3).
  • 45. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein & cell. 2015;6(5):363-72.
  • 46. Zhang B. CRISPR/Cas gene therapy. Journal of cellular physiology. 2021;236(4):2459-81.
  • 47. Shinwari ZK, Tanveer F, Khalil AT. Ethical Issues Regarding CRISPR Mediated Genome Editing. Current issues in molecular biology. 2018;26:103-10.
There are 47 citations in total.

Details

Primary Language English
Subjects Molecular Genetics
Journal Section Reviews
Authors

Sebile Azırak 0000-0001-9040-6773

Ahmet Genç 0000-0002-9826-2396

Early Pub Date March 4, 2025
Publication Date March 26, 2025
Submission Date February 18, 2025
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 03

Cite

Vancouver Azırak S, Genç A. CRISPR-Cas9 Teknolojisi ile Genetik Hastalıkların Tedavisi: Yeni Bir Devrim. JOEBS. 2025;03:29-40.

download            download                         download                      

 Google Scholar            Academic Resource Index          International Institute of           

                                                                                                       Organized Research (I2OR)