Research Article
BibTex RIS Cite
Year 2017, Volume: 3 Issue: 4, 190 - 197, 28.12.2017

Abstract

References

  • 1. Cochen De Cock V, Benard-Serre N, Driss V, Granier M, Charif M, Carlander B, et al.: Supine sleep and obstructive sleep apnea syndrome in Parkinson’s disease. Sleep Med 2015 Dec;16:1497–501.
  • 2. Linz D, Linz B, Hohl M, Böhm M: Atrial arrhythmogenesis in obstructive sleep apnea: Therapeutic implications. Sleep Med Rev 2015 Apr 3;26:87–94.
  • 3. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al.: Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012 Oct 15;8:597–619.
  • 4. Borgström A, Nerfeldt P, Friberg D: Questionnaire OSA-18 has poor validity compared to polysomnography in pediatric obstructive sleep apnea. Int J Pediatr Otorhinolaryngol 2013 Nov;77:1864–8.
  • 5. Masa JF, Corral J, Sanchez de Cos J, Duran-Cantolla J, Cabello M, Hernández-Blasco L, et al.: Effectiveness of three sleep apnea management alternatives. Sleep 2013 Dec;36:1799–807.
  • 6. Lazaro J, Gil E, Vergara JM, Laguna P: OSAS detection in children by using PPG amplitude fluctuation decreases and pulse rate variability [Internet]. . Comput Cardiol 2012 2012 [cited 2016 Jan 3];185–188.
  • 7. Gaurav G, Mohanasankar S, Kumar VJ: Apnea sensing using photoplethysmography [Internet]; in : 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013, pp 285–288.
  • 8. Karmakar C, Khandoker A, Penzel T, Schobel C, Palaniswami M: Detection of Respiratory Arousals Using Photoplethysmography (PPG) Signal in Sleep Apnea Patients. IEEE J Biomed Heal Informatics 2014 May 1;18:1065–1073.
  • 9. Alian AA, Shelley KH: Photoplethysmography. Best Pract Res Clin Anaesthesiol 2014 Dec;28:395–406.
  • 10. Alpar R: Applied Statistic and Validation - Reliability [Internet]. Detay Publishing, 2010, [cited 2016 Jan 11].Availablefrom:https://books.google.com.tr/books/about/Uygulamal%C4%B1_istatistik_ve_ge%C3%A7erlik_g%C3%BCv.html?id=ITk1MwEACAAJ&pgis=1
  • 11. Rasch D, Teuscher F, Guiard V: How robust are tests for two independent samples? J Stat Plan Inference 2007 Aug;137:2706–2720.
  • 12. Ramachandran KM, Tsokos CP: Mathematical Statistics with Applications in R [Internet]. Elsevier, 2015. DOI: 10.1016/B978-0-12-417113-8.00006-0
  • 13. Mathworks C: Simscape TM User ’ s Guide R 2015 b [Internet]. 2015;Available from: https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
  • 14. Chon KH, Dash S, Ju K: Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans Biomed Eng 2009;56:2054–2063.
  • 15. Gil E, María Vergara J, Laguna P: Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. Biomed Signal Process Control 2008;3:267–277.
  • 16. Nakajima K, Tamura T, Miike H: Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med Eng Phys 1996;18:365–372.
  • 17. Nilsson LM: Respiration signals from photoplethysmography. Anesth Analg 2013;117:859–65.
  • 18. Sharma S, Mather P, Efird JT, Kahn D, Cheema M, Rubin S, et al.: Photoplethysmographic Signal to Screen Sleep-Disordered Breathing in Hospitalized Heart Failure Patients. JACC Hear Fail 2015;3:725–731.
  • 19. Ucar MK, Bozkurt MR, Polat K, Bilgin C: Investigation of effects of time domain features of the photoplethysmography (PPG) signal on sleep respiratory arrests [Internet]; in : 2015 23nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2015, pp 124–127.
  • 20. Jin L, Jie J: Detection of Respiratory Rhythm from Photoplethysmography Signal using Morphological Operators. Bioinforma Biomed Eng , 2009 ICBBE 2009 3rd Int Conf 2009;1–4.
  • 21. Suzuki T, Kameyama K-I, Inoko Y, Tamura T: Development of a sleep apnea event detection method using photoplethysmography. Conf Proc IEEE Eng Med Biol Soc 2010;2010:5258–61.
  • 22. Knorr BR, McGrath SP, Blike GT: Using a generalized neural network to identify airway obstructions in anesthetized patients postoperatively based on photoplethysmography. Conf Proc IEEE Eng Med Biol Soc 2006;Suppl:6765–8.
  • 23. Knorr-Chung BR, McGrath SP, Blike GT: Identifying airway obstructions using photoplethysmography (PPG). J Clin Monit Comput 2008;22:95–101.  

An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal

Year 2017, Volume: 3 Issue: 4, 190 - 197, 28.12.2017

Abstract

Amaç:

Obstrüktif uyku apnesinin tanısı, polisomnografi cihazı kullanılarak,
hastadan alınan biyolojik işaretlerin uzman tarafından incelenmesi ile yapılır.
Muayene, uyku evrelemesi ve solunum skorlaması olmak üzere iki aşamadan oluşur.
Solunum skorlama işlemi, burun sensöründen alınan hava akışı sinyali, çene
elektromiyografisi, karın ve göğüs kemerlerinden alınan sinyallerle
gerçekleştirilir. Sinyal elde etme yöntemi hastaya rahatsızlık verir.
Elektrotları hastaya bağlamak için uzman bir teknisyene ihtiyaç vardır. Bunlara
ilave olarak sistem evde kullanım için uygun değildir. Tüm bu dezavantajları
göz önüne alındığında, solunum skorlama işlemini gerçekleştirebilecek pratik
sistemler gerekli olduğu görülür.

Materyal ve Yöntem:

Bu çalışmada, anormal solunum olaylarıyla solunum skorlama işlemi
için kullanılabilecek kolay bir ölçüm yöntemi olan fotopletismografi sinyali
ilişkisi incelenmiştir. Fototopletismografi sinyali, noninvaziv yöntemle cilt
üzerinde  herhangi bir yerde ölçülebilir.
Bu çalışmada, normal ve anormal solunum olayları için fotopletismografi
sinyalinin karakteristik özelliklerinin ayırt edicilik düzeyi Eta korelasyon
katsayısı ile istatistiksel olarak analiz edildi.

Bulgular:

Çıkartılan 10 özellikten 6'sında R> 0.2 olarak bulunmuştur. Ek
olarak, tüm özellikler için p <0.01 bulunmuştur, yani kullanılan tüm
özellikler normal-anormal solunum olayları için önemlidir.

Sonuç:















Bu çalışma
sonucunda, PPG sinyalinin mevcut sistemlere alternatif olarak kullanılabileceği
düşünülmektedir.  

References

  • 1. Cochen De Cock V, Benard-Serre N, Driss V, Granier M, Charif M, Carlander B, et al.: Supine sleep and obstructive sleep apnea syndrome in Parkinson’s disease. Sleep Med 2015 Dec;16:1497–501.
  • 2. Linz D, Linz B, Hohl M, Böhm M: Atrial arrhythmogenesis in obstructive sleep apnea: Therapeutic implications. Sleep Med Rev 2015 Apr 3;26:87–94.
  • 3. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al.: Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med 2012 Oct 15;8:597–619.
  • 4. Borgström A, Nerfeldt P, Friberg D: Questionnaire OSA-18 has poor validity compared to polysomnography in pediatric obstructive sleep apnea. Int J Pediatr Otorhinolaryngol 2013 Nov;77:1864–8.
  • 5. Masa JF, Corral J, Sanchez de Cos J, Duran-Cantolla J, Cabello M, Hernández-Blasco L, et al.: Effectiveness of three sleep apnea management alternatives. Sleep 2013 Dec;36:1799–807.
  • 6. Lazaro J, Gil E, Vergara JM, Laguna P: OSAS detection in children by using PPG amplitude fluctuation decreases and pulse rate variability [Internet]. . Comput Cardiol 2012 2012 [cited 2016 Jan 3];185–188.
  • 7. Gaurav G, Mohanasankar S, Kumar VJ: Apnea sensing using photoplethysmography [Internet]; in : 2013 Seventh International Conference on Sensing Technology (ICST). IEEE, 2013, pp 285–288.
  • 8. Karmakar C, Khandoker A, Penzel T, Schobel C, Palaniswami M: Detection of Respiratory Arousals Using Photoplethysmography (PPG) Signal in Sleep Apnea Patients. IEEE J Biomed Heal Informatics 2014 May 1;18:1065–1073.
  • 9. Alian AA, Shelley KH: Photoplethysmography. Best Pract Res Clin Anaesthesiol 2014 Dec;28:395–406.
  • 10. Alpar R: Applied Statistic and Validation - Reliability [Internet]. Detay Publishing, 2010, [cited 2016 Jan 11].Availablefrom:https://books.google.com.tr/books/about/Uygulamal%C4%B1_istatistik_ve_ge%C3%A7erlik_g%C3%BCv.html?id=ITk1MwEACAAJ&pgis=1
  • 11. Rasch D, Teuscher F, Guiard V: How robust are tests for two independent samples? J Stat Plan Inference 2007 Aug;137:2706–2720.
  • 12. Ramachandran KM, Tsokos CP: Mathematical Statistics with Applications in R [Internet]. Elsevier, 2015. DOI: 10.1016/B978-0-12-417113-8.00006-0
  • 13. Mathworks C: Simscape TM User ’ s Guide R 2015 b [Internet]. 2015;Available from: https://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf
  • 14. Chon KH, Dash S, Ju K: Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans Biomed Eng 2009;56:2054–2063.
  • 15. Gil E, María Vergara J, Laguna P: Detection of decreases in the amplitude fluctuation of pulse photoplethysmography signal as indication of obstructive sleep apnea syndrome in children. Biomed Signal Process Control 2008;3:267–277.
  • 16. Nakajima K, Tamura T, Miike H: Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med Eng Phys 1996;18:365–372.
  • 17. Nilsson LM: Respiration signals from photoplethysmography. Anesth Analg 2013;117:859–65.
  • 18. Sharma S, Mather P, Efird JT, Kahn D, Cheema M, Rubin S, et al.: Photoplethysmographic Signal to Screen Sleep-Disordered Breathing in Hospitalized Heart Failure Patients. JACC Hear Fail 2015;3:725–731.
  • 19. Ucar MK, Bozkurt MR, Polat K, Bilgin C: Investigation of effects of time domain features of the photoplethysmography (PPG) signal on sleep respiratory arrests [Internet]; in : 2015 23nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2015, pp 124–127.
  • 20. Jin L, Jie J: Detection of Respiratory Rhythm from Photoplethysmography Signal using Morphological Operators. Bioinforma Biomed Eng , 2009 ICBBE 2009 3rd Int Conf 2009;1–4.
  • 21. Suzuki T, Kameyama K-I, Inoko Y, Tamura T: Development of a sleep apnea event detection method using photoplethysmography. Conf Proc IEEE Eng Med Biol Soc 2010;2010:5258–61.
  • 22. Knorr BR, McGrath SP, Blike GT: Using a generalized neural network to identify airway obstructions in anesthetized patients postoperatively based on photoplethysmography. Conf Proc IEEE Eng Med Biol Soc 2006;Suppl:6765–8.
  • 23. Knorr-Chung BR, McGrath SP, Blike GT: Identifying airway obstructions using photoplethysmography (PPG). J Clin Monit Comput 2008;22:95–101.  
There are 23 citations in total.

Details

Journal Section Articles
Authors

Muhammed Kürşad Uçar This is me

Cahit Bilgin

Ferda Bozkurt This is me

Kemal Polat This is me

Mehmet Recep Bozkurt This is me

Publication Date December 28, 2017
Submission Date December 4, 2017
Acceptance Date December 25, 2017
Published in Issue Year 2017 Volume: 3 Issue: 4

Cite

APA Uçar, M. K., Bilgin, C., Bozkurt, F., Polat, K., et al. (2017). An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal. Journal of Human Rhythm, 3(4), 190-197.
AMA Uçar MK, Bilgin C, Bozkurt F, Polat K, Bozkurt MR. An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal. Journal of Human Rhythm. December 2017;3(4):190-197.
Chicago Uçar, Muhammed Kürşad, Cahit Bilgin, Ferda Bozkurt, Kemal Polat, and Mehmet Recep Bozkurt. “An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal”. Journal of Human Rhythm 3, no. 4 (December 2017): 190-97.
EndNote Uçar MK, Bilgin C, Bozkurt F, Polat K, Bozkurt MR (December 1, 2017) An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal. Journal of Human Rhythm 3 4 190–197.
IEEE M. K. Uçar, C. Bilgin, F. Bozkurt, K. Polat, and M. R. Bozkurt, “An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal”, Journal of Human Rhythm, vol. 3, no. 4, pp. 190–197, 2017.
ISNAD Uçar, Muhammed Kürşad et al. “An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal”. Journal of Human Rhythm 3/4 (December 2017), 190-197.
JAMA Uçar MK, Bilgin C, Bozkurt F, Polat K, Bozkurt MR. An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal. Journal of Human Rhythm. 2017;3:190–197.
MLA Uçar, Muhammed Kürşad et al. “An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal”. Journal of Human Rhythm, vol. 3, no. 4, 2017, pp. 190-7.
Vancouver Uçar MK, Bilgin C, Bozkurt F, Polat K, Bozkurt MR. An Alternative New Signal In The Respiratory Scoring Process In Patients With Obstructive Sleep Apnea: Photoplethysmography Signal. Journal of Human Rhythm. 2017;3(4):190-7.