Review
BibTex RIS Cite

Review of Nitrogen Oxides (NOx) Reduction Methods Used on Marine Diesel Engine

Year 2023, Volume: 3 Issue: 1, 34 - 44, 30.06.2023
https://doi.org/10.58771/joinmet.1294204

Abstract

Reducing nitrogen oxide (NOx) emissions is of great importance in terms of environmental sustainability and air quality. This study is a review that examines various applications aimed at reducing NOx emissions. Below is a summary of the evaluation of technologies, including the common rail system, exhaust gas recirculation (EGR), Miller cycle, direct water injection, emulsified fuel, and selective catalytic reduction (SCR). The common rail system, EGR, and Miller cycle can generally be considered as combustion control-based methods for reducing NOx within the cylinder. Direct water injection and emulsified fuel aim to lower temperatures inside the cylinder by utilizing the high internal heat of evaporation of water. Selective catalytic reduction is a technology where NOx in the exhaust gas is converted into nitrogen gas and water vapor through the use of a catalyst. This study evaluates the effectiveness and applicability of various technologies used to reduce NOx emissions. Each method may have different advantages and disadvantages. Additionally, there may be certain limitations and variations depending on the application areas of these methods. Therefore, a careful assessment is necessary to determine the most suitable technology or combination of technologies for reducing NOx emissions.

References

  • Akinpelu, A., Alam, M. S., Shafiullah, M., Rahman, S. M., & Al-Ismail, F. S. (2023). Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction. Sustainability, 15(7), Article 7. https://doi.org/10.3390/su15075639
  • Ayhan, V. (2016). Direk Enjeksiyonlu Bir Dizel Motoruna Buhar ve Farklı Şekillerde Su Gönderiminin Performans ve NOx Emisyonlarına Etkilerinin İncelenmesi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 20. https://doi.org/10.16984/saufenbilder.91773
  • Ayhan, V. (2020). Investigation of electronic controlled direct water injection for performance and emissions of a diesel engine running on sunflower oil methyl ester. Fuel, 275, 117992. https://doi.org/10.1016/j.fuel.2020.117992
  • Ayhan, V., & Ece, Y. M. (2020). New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke. Applied Energy, 260, 114328. https://doi.org/10.1016/j.apenergy.2019.114328
  • Badami, M., Millo, F., & D’Amato, D. D. (2001). Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection. SAE Transactions, 110, 663–674.
  • Bedford, F., Rutland, C., Dittrich, P., Raab, A., & Wirbeleit, F. (2000). Effects of Direct Water Injection on DI Diesel Engine Combustion. https://doi.org/10.4271/2000-01-2938
  • Chehrmonavari, H., Kakaee, A., Hosseini, S. E., Desideri, U., Tsatsaronis, G., Floerchinger, G., Braun, R., & Paykani, A. (2023). Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renewable and Sustainable Energy Reviews, 171, 112982. https://doi.org/10.1016/j.rser.2022.112982
  • DieselNet: Engine Emission Standards. (n.d.). Retrieved 20 June 2023, from https://dieselnet.com/standards/
  • Esakki, T., Rangaswamy, S. M., & Jayabal, R. (2022). An experimental study on biodiesel production and impact of EGR in a CRDI diesel engine propelled with leather industry waste fat biodiesel. Fuel, 321, 123995. https://doi.org/10.1016/j.fuel.2022.123995
  • Feng, S., Li, Z., Shen, B., Yuan, P., Ma, J., Wang, Z., & Kong, W. (2022). An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust. Journal of Environmental Management, 317, 115457. https://doi.org/10.1016/j.jenvman.2022.115457
  • Gonca, G., & Genc, I. (2021). Effects of liquid fuels and alcohols on the pollutant emissions of a spark ignition engine. International Journal of Global Warming, 23(4), 385–396. https://doi.org/10.1504/IJGW.2021.114344
  • Gonca, G., Sahin, B., Parlak, A., Ayhan, V., Cesur, İ., & Koksal, S. (2015). Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 93, 795–800. https://doi.org/10.1016/j.energy.2015.08.032
  • Gonca, G., Sahin, B., Parlak, A., Ust, Y., Ayhan, V., Cesur, İ., & Boru, B. (2015). Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 138, 11–20. https://doi.org/10.1016/j.apenergy.2014.10.043
  • Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285–290. https://doi.org/10.1016/j.energy.2013.02.004
  • Görkem KÖKKÜLÜNK. (2012). "Su buharı enjeksiyonlu bir dizel motorunda egzoz gazları geri dolaşımının (EGR) performans ve emisyonlara etkilerinin incelenmesi [Tez]. Yıldız Teknik Üniversitesi.
  • Gowrishankar, S., J, P. B., Rastogi, P., & Krishnasamy, A. (2020). Investigations on NOx and Smoke Emissions Reduction Potential through Water-in-Diesel Emulsion and Water Fumigation in a Small-Bore Diesel Engine (SAE Technical Paper No. 2020-32–2312). SAE International. https://doi.org/10.4271/2020-32-2312
  • Hountalas, D. T., Mavropoulos, G. C., & Zannis, T. C. (2007, April 16). Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines. SAE World Congress & Exhibition. https://doi.org/10.4271/2007-01-0120
  • IMO|Marine Commercial|YANMAR. (n.d.). YANMAR. Retrieved 12 October 2019, from https://www.yanmar.com/global/marinecommercial/imo/index.html
  • Li, C., Wang, Y., Jia, B., & Roskilly, A. P. (2019). Application of Miller cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – A numerical approach with model validations. Applied Thermal Engineering, 150, 904–911. https://doi.org/10.1016/j.applthermaleng.2019.01.056
  • Ma, X., Zhang, F., Han, K., Zhu, Z., & Liu, Y. (2014). Effects of Intake Manifold Water Injection on Combustion and Emissions of Diesel Engine. Energy Procedia, 61, 777–781. https://doi.org/10.1016/j.egypro.2014.11.963
  • Mohd Tamam, M. Q., Yahya, W. J., Ithnin, A. M., Abdullah, N. R., Kadir, H. A., Rahman, M. M., Rahman, H. A., Abu Mansor, M. R., & Noge, H. (2023). Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion. Energy, 268, 126704. https://doi.org/10.1016/j.energy.2023.126704
  • Nielsen, K. V., Blanke, M., & Vejlgaard-Laursen, M. (2015). Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines. IFAC-PapersOnLine, 48(16), 254–260. https://doi.org/10.1016/j.ifacol.2015.10.289
  • Park, J., & Oh, J. (2022). Study on the characteristics of performance, combustion, and emissions for a diesel water emulsion fuel on a combustion visualization engine and a commercial diesel engine. Fuel, 311, 122520. https://doi.org/10.1016/j.fuel.2021.122520
  • Patil, V., & Thirumalini, S. (2021). Effect of cooled EGR on performance and emission characteristics of diesel engine with diesel and diesel-karanja blend. Materials Today: Proceedings, 46, 4720–4727. https://doi.org/10.1016/j.matpr.2020.10.303
  • Rajesh kumar, B., & Saravanan, S. (2015). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160, 217–226. https://doi.org/10.1016/j.fuel.2015.07.089
  • Ranganatha Swamy, L., Banapurmath, N. R., Harari, P. A., Chandrashekar, T. K., Keerthi, B. L., C, H., Naveen, S. S., Hemaraju, Katti, B. B., & Kulkarni, P. S. (2022). Diesel engine performance fuelled with manifold injection of ethanol and water-in-diesel emulsion blends. Materials Today: Proceedings, 66, 1914–1919. https://doi.org/10.1016/j.matpr.2022.05.419
  • Şahin, Z., Tuti, M., & Durgun, O. (2014). Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel, 115, 884–895. https://doi.org/10.1016/j.fuel.2012.10.080
  • Schommers, J., Duvinage, F., Stotz, M., Peters, A., Ellwanger, S., Koyanagi, K., & Gildein, H. (2000). Potential of Common Rail Injection System for Passenger Car DI Diesel Engines. SAE Transactions, 109, 1030–1038. JSTOR.
  • Singh, E., Hlaing, P., & Dibble, R. W. (2020). Investigating Water Injection in Single-Cylinder Gasoline Spark-Ignited Engines at Fixed Speed. Energy & Fuels, 34(12), 16636–16653. https://doi.org/10.1021/acs.energyfuels.0c03057
  • Tauzia, X., Maiboom, A., & Shah, S. R. (2010). Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy, 35(9), 3628–3639. https://doi.org/10.1016/j.energy.2010.05.007
  • Wang, Y., Lin, L., Roskilly, A. P., Zeng, S., Huang, J., He, Y., Huang, X., Huang, H., Wei, H., Li, S., & Yang, J. (2007). An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Applied Thermal Engineering, 27(11), 1779–1789. https://doi.org/10.1016/j.applthermaleng.2007.01.013
  • Wang, Z., Zhou, S., Feng, Y., & Zhu, Y. (2017). Research of NOx reduction on a low-speed two-stroke marine diesel engine by using EGR (exhaust gas recirculation)–CB (cylinder bypass) and EGB (exhaust gas bypass). International Journal of Hydrogen Energy, 42(30), 19337–19345. https://doi.org/10.1016/j.ijhydene.2017.06.009
  • Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067–2072. https://doi.org/10.1016/j.egypro.2012.01.314
  • Zhang, Y., Xia, C., Liu, D., Zhu, Y., & Feng, Y. (2023). Experimental investigation of the high-pressure SCR reactor impact on a marine two-stroke diesel engine. Fuel, 335, 127064. https://doi.org/10.1016/j.fuel.2022.127064
  • Zhou, S., Gao, R., Feng, Y., & Zhu, Y. (2017). Evaluation of Miller cycle and fuel injection direction strategies for low NOx emission in marine two-stroke engine. International Journal of Hydrogen Energy, 42(31), 20351–20360. https://doi.org/10.1016/j.ijhydene.2017.06.020
  • Zhu, S., Hu, B., Akehurst, S., Copeland, C., Lewis, A., Yuan, H., Kennedy, I., Bernards, J., & Branney, C. (2019). A review of water injection applied on the internal combustion engine. Energy Conversion and Management, 184, 139–158. https://doi.org/10.1016/j.enconman.2019.01.042
  • Zhu, Y., Zhou, W., Xia, C., & Hou, Q. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere, 13(5), Article 5. https://doi.org/10.3390/atmos13050731

Gemi Dizel Motorunda Azot Oksitleri (NOx) İndirgeme Yöntemlerinin İncelenmesi

Year 2023, Volume: 3 Issue: 1, 34 - 44, 30.06.2023
https://doi.org/10.58771/joinmet.1294204

Abstract

Azot oksit emisyonlarının azaltılması, çevresel sürdürülebilirlik ve hava kalitesi açısından büyük önem taşıyan bir konudur. Bu çalışma, NOx emisyonlarını azaltmaya yönelik çeşitli teknolojilerin incelendiği bir derleme çalışmasıdır. Aşağıda, common rail sistemi, egzoz gazlarının geri dönüşümü, Miller çevrimi, suyun direct enjeksiyonu, emülsife yakıt ve seçici katalitik indirgeme gibi teknolojilerin incelenmesine yönelik bir özet sunulmuştur. Common rail sistemi, egzoz gazlarının geri dönüşü ve miller çevrimi genel olarak silindir içindeki yanmanın kontrolüne dayalı NOx indirgeme yöntemleri olarak düşünülebilir. Su enjeksiyonu ve emülsife yakıt ise suyun yüksek buharlaşma iç ısısından faydalanarak silindir içindeki sıcaklıkların düşürülmesini amaçlamaktadır. Seçici katalitik indirgeme ise egzoz gazında bulunan NOx'un bir katalizör yardımıyla azot gazına ve su buharına dönüştürüldüğü bir teknolojidir. Bu çalışma, NOx emisyonlarını azaltmak için kullanılan çeşitli teknolojilerin etkinliğini ve uygulanabilirliğini değerlendirmektedir. Her bir yöntem, farklı avantajlara ve dezavantajlara sahip olabilmektedir. Bunun yanında, yöntemlerin bazı kısıtlamaları da olabilir ve uygulama alanlarına bağlı olarak farklılık gösterebilir. Bu nedenle, NOx emisyonlarının azaltılması için en uygun teknoloji veya teknoloji kombinasyonunu belirlemek için dikkatli bir değerlendirme yapılması gerekmektedir.

References

  • Akinpelu, A., Alam, M. S., Shafiullah, M., Rahman, S. M., & Al-Ismail, F. S. (2023). Greenhouse Gas Emission Dynamics of Saudi Arabia: Potential of Hydrogen Fuel for Emission Footprint Reduction. Sustainability, 15(7), Article 7. https://doi.org/10.3390/su15075639
  • Ayhan, V. (2016). Direk Enjeksiyonlu Bir Dizel Motoruna Buhar ve Farklı Şekillerde Su Gönderiminin Performans ve NOx Emisyonlarına Etkilerinin İncelenmesi. SAÜ Fen Bilimleri Enstitüsü Dergisi, 20. https://doi.org/10.16984/saufenbilder.91773
  • Ayhan, V. (2020). Investigation of electronic controlled direct water injection for performance and emissions of a diesel engine running on sunflower oil methyl ester. Fuel, 275, 117992. https://doi.org/10.1016/j.fuel.2020.117992
  • Ayhan, V., & Ece, Y. M. (2020). New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke. Applied Energy, 260, 114328. https://doi.org/10.1016/j.apenergy.2019.114328
  • Badami, M., Millo, F., & D’Amato, D. D. (2001). Experimental Investigation on Soot and NOx Formation in a DI Common Rail Diesel Engine with Pilot Injection. SAE Transactions, 110, 663–674.
  • Bedford, F., Rutland, C., Dittrich, P., Raab, A., & Wirbeleit, F. (2000). Effects of Direct Water Injection on DI Diesel Engine Combustion. https://doi.org/10.4271/2000-01-2938
  • Chehrmonavari, H., Kakaee, A., Hosseini, S. E., Desideri, U., Tsatsaronis, G., Floerchinger, G., Braun, R., & Paykani, A. (2023). Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renewable and Sustainable Energy Reviews, 171, 112982. https://doi.org/10.1016/j.rser.2022.112982
  • DieselNet: Engine Emission Standards. (n.d.). Retrieved 20 June 2023, from https://dieselnet.com/standards/
  • Esakki, T., Rangaswamy, S. M., & Jayabal, R. (2022). An experimental study on biodiesel production and impact of EGR in a CRDI diesel engine propelled with leather industry waste fat biodiesel. Fuel, 321, 123995. https://doi.org/10.1016/j.fuel.2022.123995
  • Feng, S., Li, Z., Shen, B., Yuan, P., Ma, J., Wang, Z., & Kong, W. (2022). An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust. Journal of Environmental Management, 317, 115457. https://doi.org/10.1016/j.jenvman.2022.115457
  • Gonca, G., & Genc, I. (2021). Effects of liquid fuels and alcohols on the pollutant emissions of a spark ignition engine. International Journal of Global Warming, 23(4), 385–396. https://doi.org/10.1504/IJGW.2021.114344
  • Gonca, G., Sahin, B., Parlak, A., Ayhan, V., Cesur, İ., & Koksal, S. (2015). Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy, 93, 795–800. https://doi.org/10.1016/j.energy.2015.08.032
  • Gonca, G., Sahin, B., Parlak, A., Ust, Y., Ayhan, V., Cesur, İ., & Boru, B. (2015). Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy, 138, 11–20. https://doi.org/10.1016/j.apenergy.2014.10.043
  • Gonca, G., Sahin, B., & Ust, Y. (2013). Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy, 54, 285–290. https://doi.org/10.1016/j.energy.2013.02.004
  • Görkem KÖKKÜLÜNK. (2012). "Su buharı enjeksiyonlu bir dizel motorunda egzoz gazları geri dolaşımının (EGR) performans ve emisyonlara etkilerinin incelenmesi [Tez]. Yıldız Teknik Üniversitesi.
  • Gowrishankar, S., J, P. B., Rastogi, P., & Krishnasamy, A. (2020). Investigations on NOx and Smoke Emissions Reduction Potential through Water-in-Diesel Emulsion and Water Fumigation in a Small-Bore Diesel Engine (SAE Technical Paper No. 2020-32–2312). SAE International. https://doi.org/10.4271/2020-32-2312
  • Hountalas, D. T., Mavropoulos, G. C., & Zannis, T. C. (2007, April 16). Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines. SAE World Congress & Exhibition. https://doi.org/10.4271/2007-01-0120
  • IMO|Marine Commercial|YANMAR. (n.d.). YANMAR. Retrieved 12 October 2019, from https://www.yanmar.com/global/marinecommercial/imo/index.html
  • Li, C., Wang, Y., Jia, B., & Roskilly, A. P. (2019). Application of Miller cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine – A numerical approach with model validations. Applied Thermal Engineering, 150, 904–911. https://doi.org/10.1016/j.applthermaleng.2019.01.056
  • Ma, X., Zhang, F., Han, K., Zhu, Z., & Liu, Y. (2014). Effects of Intake Manifold Water Injection on Combustion and Emissions of Diesel Engine. Energy Procedia, 61, 777–781. https://doi.org/10.1016/j.egypro.2014.11.963
  • Mohd Tamam, M. Q., Yahya, W. J., Ithnin, A. M., Abdullah, N. R., Kadir, H. A., Rahman, M. M., Rahman, H. A., Abu Mansor, M. R., & Noge, H. (2023). Performance and emission studies of a common rail turbocharged diesel electric generator fueled with emulsifier free water/diesel emulsion. Energy, 268, 126704. https://doi.org/10.1016/j.energy.2023.126704
  • Nielsen, K. V., Blanke, M., & Vejlgaard-Laursen, M. (2015). Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines. IFAC-PapersOnLine, 48(16), 254–260. https://doi.org/10.1016/j.ifacol.2015.10.289
  • Park, J., & Oh, J. (2022). Study on the characteristics of performance, combustion, and emissions for a diesel water emulsion fuel on a combustion visualization engine and a commercial diesel engine. Fuel, 311, 122520. https://doi.org/10.1016/j.fuel.2021.122520
  • Patil, V., & Thirumalini, S. (2021). Effect of cooled EGR on performance and emission characteristics of diesel engine with diesel and diesel-karanja blend. Materials Today: Proceedings, 46, 4720–4727. https://doi.org/10.1016/j.matpr.2020.10.303
  • Rajesh kumar, B., & Saravanan, S. (2015). Effect of exhaust gas recirculation (EGR) on performance and emissions of a constant speed DI diesel engine fueled with pentanol/diesel blends. Fuel, 160, 217–226. https://doi.org/10.1016/j.fuel.2015.07.089
  • Ranganatha Swamy, L., Banapurmath, N. R., Harari, P. A., Chandrashekar, T. K., Keerthi, B. L., C, H., Naveen, S. S., Hemaraju, Katti, B. B., & Kulkarni, P. S. (2022). Diesel engine performance fuelled with manifold injection of ethanol and water-in-diesel emulsion blends. Materials Today: Proceedings, 66, 1914–1919. https://doi.org/10.1016/j.matpr.2022.05.419
  • Şahin, Z., Tuti, M., & Durgun, O. (2014). Experimental investigation of the effects of water adding to the intake air on the engine performance and exhaust emissions in a DI automotive diesel engine. Fuel, 115, 884–895. https://doi.org/10.1016/j.fuel.2012.10.080
  • Schommers, J., Duvinage, F., Stotz, M., Peters, A., Ellwanger, S., Koyanagi, K., & Gildein, H. (2000). Potential of Common Rail Injection System for Passenger Car DI Diesel Engines. SAE Transactions, 109, 1030–1038. JSTOR.
  • Singh, E., Hlaing, P., & Dibble, R. W. (2020). Investigating Water Injection in Single-Cylinder Gasoline Spark-Ignited Engines at Fixed Speed. Energy & Fuels, 34(12), 16636–16653. https://doi.org/10.1021/acs.energyfuels.0c03057
  • Tauzia, X., Maiboom, A., & Shah, S. R. (2010). Experimental study of inlet manifold water injection on combustion and emissions of an automotive direct injection Diesel engine. Energy, 35(9), 3628–3639. https://doi.org/10.1016/j.energy.2010.05.007
  • Wang, Y., Lin, L., Roskilly, A. P., Zeng, S., Huang, J., He, Y., Huang, X., Huang, H., Wei, H., Li, S., & Yang, J. (2007). An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Applied Thermal Engineering, 27(11), 1779–1789. https://doi.org/10.1016/j.applthermaleng.2007.01.013
  • Wang, Z., Zhou, S., Feng, Y., & Zhu, Y. (2017). Research of NOx reduction on a low-speed two-stroke marine diesel engine by using EGR (exhaust gas recirculation)–CB (cylinder bypass) and EGB (exhaust gas bypass). International Journal of Hydrogen Energy, 42(30), 19337–19345. https://doi.org/10.1016/j.ijhydene.2017.06.009
  • Xu-Guang, T., Hai-Lang, S., Tao, Q., Zhi-Qiang, F., & Wen-Hui, Y. (2012). The Impact of Common Rail System’s Control Parameters on the Performance of High-power Diesel. Energy Procedia, 16, 2067–2072. https://doi.org/10.1016/j.egypro.2012.01.314
  • Zhang, Y., Xia, C., Liu, D., Zhu, Y., & Feng, Y. (2023). Experimental investigation of the high-pressure SCR reactor impact on a marine two-stroke diesel engine. Fuel, 335, 127064. https://doi.org/10.1016/j.fuel.2022.127064
  • Zhou, S., Gao, R., Feng, Y., & Zhu, Y. (2017). Evaluation of Miller cycle and fuel injection direction strategies for low NOx emission in marine two-stroke engine. International Journal of Hydrogen Energy, 42(31), 20351–20360. https://doi.org/10.1016/j.ijhydene.2017.06.020
  • Zhu, S., Hu, B., Akehurst, S., Copeland, C., Lewis, A., Yuan, H., Kennedy, I., Bernards, J., & Branney, C. (2019). A review of water injection applied on the internal combustion engine. Energy Conversion and Management, 184, 139–158. https://doi.org/10.1016/j.enconman.2019.01.042
  • Zhu, Y., Zhou, W., Xia, C., & Hou, Q. (2022). Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere, 13(5), Article 5. https://doi.org/10.3390/atmos13050731
There are 37 citations in total.

Details

Primary Language English
Subjects Maritime Engineering
Journal Section Reviews
Authors

Fatih Okumuş 0000-0001-8414-5802

Görkem Kökkülünk 0000-0001-6788-2982

Publication Date June 30, 2023
Submission Date May 8, 2023
Published in Issue Year 2023 Volume: 3 Issue: 1

Cite

APA Okumuş, F., & Kökkülünk, G. (2023). Review of Nitrogen Oxides (NOx) Reduction Methods Used on Marine Diesel Engine. Journal of Marine and Engineering Technology, 3(1), 34-44. https://doi.org/10.58771/joinmet.1294204