Review
BibTex RIS Cite

Biorisk Malzeme Dezenfeksiyonundan Sonra Kullanılan Dezenfektanlar: Çevresel Etki ve Ekosistemlerde Direnç Tespiti ve Giderilmesinde Drone'ların Rolü

Year 2024, Volume: 5 Issue: 1, 1 - 16, 27.06.2024
https://doi.org/10.58769/joinssr.1379496

Abstract

Hızla evrimleşen dünyamızda, dekontaminasyon, ekolojik dayanıklılık ve son teknolojideki zorlukların ve fırsatların birleşimi, ilginin ve yeniliğin odağını oluşturuyor. Bu inceleme, insan güvenliği ve çevresel denge açısından derin etkileri olan bu unsurlar arasındaki etkileşimi araştırmaktadır. Dekontaminasyon sonrası tedavi, Kimyasal, Biyolojik, Radyolojik ve Nükleer (KBRN) tehlikelerle mücadelede kritik bir öneme sahiptir. Kontaminasyonun kapsamlı bir şekilde ortadan kaldırılması, risk yönetimi için zorunludur. Ekosistemlerde direncin ortaya çıkması ve yayılması karmaşık bir sorun teşkil etmektedir. Direnç mekanizmaları, çevrenin restorasyonunu, insan sağlığını ve ekolojik dayanıklılığı etkileyen dekontaminasyon ajanlarını engelleyebilir.

Drone teknolojisi, çevresel izlemede dönüştürücü bir çağın habercisidir. Gelişmiş sensörlere ve veri yeteneklerine sahip drone'lar uzak, tehlikeli ve erişilemeyen ekolojik alanlara erişim sağlamaktadır. Gerçek zamanlı veriler, araştırmacıların direnç dinamikleri dahil gelişen koşullara uyum sağlamalarına olanak tanır. Drone'lar aynı zamanda kirlenmiş alanlarda hedefe yönelik iyileştirme araçları olarak hizmet verir, kaynak tahsisini optimize eder ve kesintiyi en aza indirir. Vaka çalışmaları, ekolojik restorasyondaki etkinliği vurgulamaktadır. Drone'ları dekontaminasyon sonrası protokollere entegre etmek, bir paradigma değişimidir. Drone'ların sağladığı gerçek zamanlı veriler, ekolojik anlayış ile stratejik eylem arasındaki boşluğu doldurur. Drone'lar, kirlenmiş alanlarda hedefe yönelik iyileştirmeler yaparak kaynak tahsisini optimize eder ve kesintiyi en aza indirir. Vaka çalışmaları, ekolojik restorasyondaki etkinliği vurgulamaktadır. Drone'ların sağladığı gerçek zamanlı veriler, ekolojik anlayış ile stratejik eylem arasındaki boşluğu doldurur. Sonuç olarak, dünyamızı korumak kolektif bir sorumluluktur. Drone'lar, insan ihtiyaçlarını çevreyle uyumlu hale getirme konusundaki kararlılığımızı simgeliyor. Bu inceleme, yalnızca kendimiz için değil, yaşadığımız dünya için de koruma, muhafaza etme ve gelişme kapasitemizi kutlayarak ileriye giden yolu aydınlatıyor. İnsanlığın ve doğanın uyumlu bir şekilde bir arada yaşayabileceği sürdürülebilir bir gelecek yaratma zorunluluğunu vurguluyor.

References

  • [1] Yates, S. R., McConnell, L. L., Hapeman, C. J., Papiernik, S. K., Gao, S., & Trabue, S. L. (2011). Managing agricultural emissions to the atmosphere: state of the science, fate and mitigation, and identifying research gaps. Journal of Environmental Quality, 40(5), 1347-1358.
  • [2] Covello, V. T., & Frey, R. S. (1990). Technology-based environmental health risks in developing nations. Technological Forecasting and Social Change, 37(2), 159-179.
  • [3] DiEuliis, D., & Giordano, J. (2018). Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. Protein & Cell, 9(3), 239-240.
  • [4] Ormerod, S. J. (2003). Restoration in applied ecology: editor's introduction. Journal of applied ecology, 40(1), 44-50.
  • [5] de Almeida, D. R. A., Almeyda Zambrano, A. M., Broadbent, E. N., Wendt, A. L., Foster, P., Wilkinson, B. E., ... & Chazdon, R. (2020). Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar. Biotropica, 52(6), 1155-1167.
  • [6] Poljak, M., & Šterbenc, A. J. C. M. (2020). Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clinical Microbiology and Infection, 26(4), 425-430.
  • [7] Corcoran, E., Winsen, M., Sudholz, A., & Hamilton, G. (2021). Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods in Ecology and Evolution, 12(6), 1103-1114.
  • [8] Kitonsa, H., & Kruglikov, S. V. (2018). Significance of drone technology for achievement of the United Nations sustainable development goals. R-economy, 4(3), 115-120.
  • [9] Magalhães, S. M. C., Jorge, R. F., & Castro, P. M. (2009). Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes—a transition regime between bioventing and soil vapour extraction. Journal of hazardous materials, 170(2-3), 711-715.
  • [10] Adebiyi, F. M., Ore, O. T., Adeola, A. O., Durodola, S. S., Akeremale, O. F., Olubodun, K. O., & Akeremale, O. K. (2021). Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review. Environmental Chemistry Letters, 19, 3243-3262.
  • [11] Yair, S., Ofer, B., Arik, E., Shai, S., Yossi, R., Tzvika, D., & Amir, K. (2008). Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications. Critical reviews in biotechnology, 28(4), 265-275.
  • [12] Bi, J., Tao, Q., Huang, X., Wang, J., Wang, T., & Hao, H. (2021). Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. Chemosphere, 284, 131270.
  • [13] Bernardo, M., Gonçalves, M., Lapa, N., Barbosa, R., Mendes, B., & Pinto, F. (2012). Characterization of chars produced in the co-pyrolysis of different wastes: Decontamination study. Journal of hazardous materials, 207, 28-35.
  • [14] Quaranta, G., Vincenti, S., Ferriero, A. M., Boninti, F., Sezzatini, R., Turnaturi, C., ... & Laurenti, P. (2012). Legionella on board trains: effectiveness of environmental surveillance and decontamination. BMC Public Health, 12(1), 1-7.
  • [15] VAN SAENE, H. K., STOUTENBEEK, C. C., & STOLLER, J. K. (1992). Selective decontamination of the digestive tract in the intensive care unit: current status and future prospects. Critical care medicine, 20(5), 691-703.
  • [16] Gurtler, J. B. (2017). Pathogen decontamination of food crop soil: a review. Journal of Food Protection, 80(9), 1461- 1470.
  • [17] Stingl, K., Knüver, M. T., Vogt, P., Buhler, C., Krüger, N. J., Alt, K., ... & Käsbohrer, A. (2012). Quo vadis?— monitoring Campylobacter in Germany. European Journal of Microbiology and Immunology, 2(1), 88-96.
  • [18] Chilcott, R. P., Larner, J., Durrant, A., Hughes, P., Mahalingam, D., Rivers, S., ... & Reppucci, J. (2019). Evaluation of US Federal Guidelines (Primary Response Incident Scene Management [PRISM]) for mass decontamination of casualties during the initial operational response to a chemical incident. Annals of emergency medicine, 73(6), 671- 684.
  • [19] Kang, L., Mermel, L. A., & Trafton, P. G. (2008). What happens when autogenous bone drops out of the sterile field during orthopaedic trauma surgery. Journal of orthopaedic trauma, 22(6), 430-431.
  • [20] Carter, H., Weston, D., Betts, N., Wilkinson, S., & Amlôt, R. (2018). Public perceptions of emergency decontamination: Effects of intervention type and responder management strategy during a focus group study. PloS one, 13(4), e0195922.
  • [21] Yasutaka, T., Naito, W., & Nakanishi, J. (2013). Cost and effectiveness of decontamination strategies in radiation contaminated areas in Fukushima in regard to external radiation dose. PloS one, 8(9), e75308.
  • [22] Love, A. H., Bailey, C. G., Hanna, M. L., Hok, S., Vu, A. K., Reutter, D. J., & Raber, E. (2011). Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. Journal of hazardous materials, 196, 115-122.
  • [23] Litvak, Y., & Bäumler, A. J. (2019). The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS pathogens, 15(2), e1007563.
  • [24] Camiade, M., Bodilis, J., Chaftar, N., Riah-Anglet, W., Gardères, J., Buquet, S., ... & Pawlak, B. (2020). Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS microbiology ecology, 96(2), fiaa008.
  • [25] Yang, L., Barnard, R., Kuzyakov, Y., & Tian, J. (2021). Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils. European journal of soil biology, 104, 103313.
  • [26] Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines, 8(10), 405.
  • [27] Koluman, A., & Dikici, A. (2013). Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Critical reviews in microbiology, 39(1), 57-69.
  • [28] Koluman, A., Dikici, A., Kahraman, T., & Ncili, G. K. (2017). Food safety and climate change: seasonality and emerging foodborne pathogens. Journal of Gastroenterology Research, 1(1), 24-29.
  • [29] Nunez-Mir, G. C., Liebhold, A. M., Guo, Q., Brockerhoff, E. G., Jo, I., Ordonez, K., & Fei, S. (2017). Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biological Invasions, 19, 3287-3299.
  • [30] Daglish, G. J., Nayak, M. K., & Pavic, H. (2014). Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: Inheritance, fitness and prevalence. Journal of Stored Products Research, 59, 237-244.
  • [31] Hoffmann, A. A., Hallas, R. J., Dean, J. A., & Schiffer, M. (2003). Low potential for climatic stress adaptation in a rainforest Drosophila species. Science, 301(5629), 100-102.
  • [32] Beier, C. M., Patterson, T. M., & Chapin, F. S. (2008). Ecosystem services and emergent vulnerability in managed ecosystems: a geospatial decision-support tool. Ecosystems, 11, 923-938.
  • [33] Downing, A. S., van Nes, E. H., Mooij, W. M., & Scheffer, M. (2012). The resilience and resistance of an ecosystem to a collapse of diversity.
  • [34] Fritz, M. L., Hamby, K. A., Taylor, K., DeYonke, A. M., & Gould, F. (2020). Genome evolution in an agricultural pest following adoption of transgenic crops. bioRxiv, 2020-10.
  • [35] Chambers, J. C., Brooks, M. L., Germino, M. J., Maestas, J. D., Board, D. I., Jones, M. O., & Allred, B. W. (2019). Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Frontiers in Ecology and Evolution, 7, 185.
  • [36] Birgé, H. E., Allen, C. R., Garmestani, A. S., & Pope, K. L. (2016). Adaptive management for ecosystem services. Journal of Environmental Management, 183, 343-352.
  • [37] James, K., & Bradshaw, K. (2020). Detecting plant species in the field with deep learning and drone technology. Methods in Ecology and Evolution, 11(11), 1509-1519.
  • [38] Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69.
  • [39] Simic Milas, A., Sousa, J. J., Warner, T. A., Teodoro, A. C., Peres, E., Gonçalves, J. A., ... & Woodget, A. (2018). Unmanned Aerial Systems (UAS) for environmental applications special issue preface. International Journal of Remote Sensing, 39(15-16), 4845-4851.
  • [40] Robinson, J. M., Harrison, P. A., Mavoa, S., & Breed, M. F. (2022). Existing and emerging uses of drones in restoration ecology. Methods in Ecology and Evolution, 13(9), 1899-1911.
  • [41] Alsamhi, S. H., Ma, O., Ansari, M. S., & Gupta, S. K. (2019). Collaboration of drone and internet of public safety things in smart cities: An overview of qos and network performance optimization. Drones, 3(1), 13.
  • [42] Ancin‐Murguzur, F. J., Munoz, L., Monz, C., & Hausner, V. H. (2020). Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sensing in Ecology and Conservation, 6(1), 105-113.
  • [43] Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C., Arredondo, T. M., & Thompson, P. G. (2016). Small unmanned aerial vehicles (micro‐UAVs, drones) in plant ecology. Applications in plant sciences, 4(9), 1600041.
  • [44] Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community- based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481-1507.
  • [45] Rahman, D. A., Sitorus, A. B. Y., & Condro, A. A. (2021). From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones, 6(1), 6.
  • [46] Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M., & Daskalova, G. N. (2020). Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environmental Research Letters, 15(12), 125002.
  • [47] Barreto, J., Cajaiba, L., Teixeira, J. B., Nascimento, L., Giacomo, A., Barcelos, N., ... & Martins, A. (2021). Drone- monitoring: Improving the detectability of threatened marine megafauna. Drones, 5(1), 14.
  • [48] Brunton, E. A., Leon, J. X., & Burnett, S. E. (2020). Evaluating the efficacy and optimal deployment of thermal infrared and true-colour imaging when using drones for monitoring kangaroos. Drones, 4(2), 20.
  • [49] Jiménez López, J., & Mulero-Pázmány, M. (2019). Drones for conservation in protected areas: Present and future. Drones, 3(1), 10.
  • [50] Bloom, D., Butcher, P. A., Colefax, A. P., Provost, E. J., Cullis, B. R., & Kelaher, B. P. (2019). Drones detect illegal and derelict crab traps in a shallow water estuary. Fisheries Management and Ecology, 26(4), 311-318.
  • [51] Euchi, J. (2021). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems?. Chinese Journal of Aeronautics, 34(2), 182-190.
  • [52] Kelaher, B. P., Colefax, A. P., Tagliafico, A., Bishop, M. J., Giles, A., & Butcher, P. A. (2019). Assessing variation in assemblages of large marine fauna off ocean beaches using drones. Marine and Freshwater Research, 71(1), 68-77.
  • [53] Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. science, 325(5944), 1121-1124.
  • [54] Kollmann, J., Meyer, S. T., Bateman, R., Conradi, T., Gossner, M. M., de Souza Mendonça Jr, M., ... & Weisser, W. W. (2016). Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restoration Ecology, 24(6), 722-730.
  • [55] Restás, Á. (2022). Drone applications fighting COVID-19 pandemic—Towards good practices. Drones, 6(1), 15.
  • [56] Franco, C., & Bouri, N. (2010). Environmental decontamination following a large-scale bioterrorism attack: federal progress and remaining gaps. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 8(2), 107-117.
  • [57] Restás, Á., Szalkai, I., & Óvári, G. (2021). Drone application for spraying disinfection liquid fighting against the covid- 19 pandemic—examining drone-related parameters influencing effectiveness. Drones, 5(3), 58.
  • [58] Kunovjanek, M., & Wankmüller, C. (2021). Containing the COVID-19 pandemic with drones-Feasibility of a drone enabled back-up transport system. Transport Policy, 106, 141-152.

Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems

Year 2024, Volume: 5 Issue: 1, 1 - 16, 27.06.2024
https://doi.org/10.58769/joinssr.1379496

Abstract

In our rapidly evolving world, the confluence of challenges and opportunities in decontamination, ecological resilience, and cutting-edge technology has become a focal point of concern and innovation. This review explores the interplay between these elements, with profound implications for human safety and environmental equilibrium. Post-decontamination treatment is pivotal in countering Chemical, Biological, Radiological, and Nuclear (CBRN) hazards. Thorough contamination elimination is imperative for risk management. The emergence and proliferation of resistance within ecosystems present a complex challenge. Resistance mechanisms can thwart decontamination agents, affecting environmental restoration, human health, and ecological resilience. Drone technology heralds a transformative era in environmental monitoring. Drones with advanced sensors and data capabilities provide access to remote, hazardous, and inaccessible ecological areas. Real-time data empowers researchers to adapt to evolving conditions, including resistance dynamics. Drones also serve as tools for targeted remediation in contaminated areas, optimizing resource allocation and minimizing disruption. Case studies highlight their efficacy in ecological restoration. Integrating drones into post-decontamination protocols is a paradigm shift. Real-time data, facilitated by drones, bridges the gap between ecological understanding and strategic action. In conclusion, safeguarding our world is a collective responsibility. Drones symbolize our commitment to harmonizing human needs with the environment. This review illuminates a path forward, celebrating our capacity to protect, preserve, and prosper, not just for ourselves but for the world we inhabit. It emphasizes the imperative to save our planet, forging a sustainable future where humanity and nature thrive in harmonious coexistence.

Ethical Statement

We declare that this review and its translations have been written in accordance with scientific and academic standards. During the process of this work, information and texts taken from sources have been clearly indicated and properly cited. Great emphasis has been placed on honesty and originality in the writing process, and all forms of plagiarism have been avoided. The examined texts and translations aim to provide accurate and reliable interpretations of the original works. Furthermore, we caution against any malicious use of this work in any form. It is essential to respect the legal rights of the reviewed sources and texts, and to use them in accordance with their permissions. This ethical statement reflects our commitment to academic integrity and respect for the rights of sources and texts. We affirm that this work has been prepared in accordance with ethical and academic norms.

Supporting Institution

Yok

Thanks

Authors have conflict of interest to declare. We would like to thank Fatma ALTINTAŞ for her kind interest in our study.

References

  • [1] Yates, S. R., McConnell, L. L., Hapeman, C. J., Papiernik, S. K., Gao, S., & Trabue, S. L. (2011). Managing agricultural emissions to the atmosphere: state of the science, fate and mitigation, and identifying research gaps. Journal of Environmental Quality, 40(5), 1347-1358.
  • [2] Covello, V. T., & Frey, R. S. (1990). Technology-based environmental health risks in developing nations. Technological Forecasting and Social Change, 37(2), 159-179.
  • [3] DiEuliis, D., & Giordano, J. (2018). Gene editing using CRISPR/Cas9: implications for dual-use and biosecurity. Protein & Cell, 9(3), 239-240.
  • [4] Ormerod, S. J. (2003). Restoration in applied ecology: editor's introduction. Journal of applied ecology, 40(1), 44-50.
  • [5] de Almeida, D. R. A., Almeyda Zambrano, A. M., Broadbent, E. N., Wendt, A. L., Foster, P., Wilkinson, B. E., ... & Chazdon, R. (2020). Detecting successional changes in tropical forest structure using GatorEye drone‐borne lidar. Biotropica, 52(6), 1155-1167.
  • [6] Poljak, M., & Šterbenc, A. J. C. M. (2020). Use of drones in clinical microbiology and infectious diseases: current status, challenges and barriers. Clinical Microbiology and Infection, 26(4), 425-430.
  • [7] Corcoran, E., Winsen, M., Sudholz, A., & Hamilton, G. (2021). Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods in Ecology and Evolution, 12(6), 1103-1114.
  • [8] Kitonsa, H., & Kruglikov, S. V. (2018). Significance of drone technology for achievement of the United Nations sustainable development goals. R-economy, 4(3), 115-120.
  • [9] Magalhães, S. M. C., Jorge, R. F., & Castro, P. M. (2009). Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes—a transition regime between bioventing and soil vapour extraction. Journal of hazardous materials, 170(2-3), 711-715.
  • [10] Adebiyi, F. M., Ore, O. T., Adeola, A. O., Durodola, S. S., Akeremale, O. F., Olubodun, K. O., & Akeremale, O. K. (2021). Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review. Environmental Chemistry Letters, 19, 3243-3262.
  • [11] Yair, S., Ofer, B., Arik, E., Shai, S., Yossi, R., Tzvika, D., & Amir, K. (2008). Organophosphate degrading microorganisms and enzymes as biocatalysts in environmental and personal decontamination applications. Critical reviews in biotechnology, 28(4), 265-275.
  • [12] Bi, J., Tao, Q., Huang, X., Wang, J., Wang, T., & Hao, H. (2021). Simultaneous decontamination of multi-pollutants: A promising approach for water remediation. Chemosphere, 284, 131270.
  • [13] Bernardo, M., Gonçalves, M., Lapa, N., Barbosa, R., Mendes, B., & Pinto, F. (2012). Characterization of chars produced in the co-pyrolysis of different wastes: Decontamination study. Journal of hazardous materials, 207, 28-35.
  • [14] Quaranta, G., Vincenti, S., Ferriero, A. M., Boninti, F., Sezzatini, R., Turnaturi, C., ... & Laurenti, P. (2012). Legionella on board trains: effectiveness of environmental surveillance and decontamination. BMC Public Health, 12(1), 1-7.
  • [15] VAN SAENE, H. K., STOUTENBEEK, C. C., & STOLLER, J. K. (1992). Selective decontamination of the digestive tract in the intensive care unit: current status and future prospects. Critical care medicine, 20(5), 691-703.
  • [16] Gurtler, J. B. (2017). Pathogen decontamination of food crop soil: a review. Journal of Food Protection, 80(9), 1461- 1470.
  • [17] Stingl, K., Knüver, M. T., Vogt, P., Buhler, C., Krüger, N. J., Alt, K., ... & Käsbohrer, A. (2012). Quo vadis?— monitoring Campylobacter in Germany. European Journal of Microbiology and Immunology, 2(1), 88-96.
  • [18] Chilcott, R. P., Larner, J., Durrant, A., Hughes, P., Mahalingam, D., Rivers, S., ... & Reppucci, J. (2019). Evaluation of US Federal Guidelines (Primary Response Incident Scene Management [PRISM]) for mass decontamination of casualties during the initial operational response to a chemical incident. Annals of emergency medicine, 73(6), 671- 684.
  • [19] Kang, L., Mermel, L. A., & Trafton, P. G. (2008). What happens when autogenous bone drops out of the sterile field during orthopaedic trauma surgery. Journal of orthopaedic trauma, 22(6), 430-431.
  • [20] Carter, H., Weston, D., Betts, N., Wilkinson, S., & Amlôt, R. (2018). Public perceptions of emergency decontamination: Effects of intervention type and responder management strategy during a focus group study. PloS one, 13(4), e0195922.
  • [21] Yasutaka, T., Naito, W., & Nakanishi, J. (2013). Cost and effectiveness of decontamination strategies in radiation contaminated areas in Fukushima in regard to external radiation dose. PloS one, 8(9), e75308.
  • [22] Love, A. H., Bailey, C. G., Hanna, M. L., Hok, S., Vu, A. K., Reutter, D. J., & Raber, E. (2011). Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. Journal of hazardous materials, 196, 115-122.
  • [23] Litvak, Y., & Bäumler, A. J. (2019). The founder hypothesis: a basis for microbiota resistance, diversity in taxa carriage, and colonization resistance against pathogens. PLoS pathogens, 15(2), e1007563.
  • [24] Camiade, M., Bodilis, J., Chaftar, N., Riah-Anglet, W., Gardères, J., Buquet, S., ... & Pawlak, B. (2020). Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS microbiology ecology, 96(2), fiaa008.
  • [25] Yang, L., Barnard, R., Kuzyakov, Y., & Tian, J. (2021). Bacterial communities drive the resistance of soil multifunctionality to land-use change in karst soils. European journal of soil biology, 104, 103313.
  • [26] Álvarez-Martínez, F. J., Barrajón-Catalán, E., & Micol, V. (2020). Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines, 8(10), 405.
  • [27] Koluman, A., & Dikici, A. (2013). Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Critical reviews in microbiology, 39(1), 57-69.
  • [28] Koluman, A., Dikici, A., Kahraman, T., & Ncili, G. K. (2017). Food safety and climate change: seasonality and emerging foodborne pathogens. Journal of Gastroenterology Research, 1(1), 24-29.
  • [29] Nunez-Mir, G. C., Liebhold, A. M., Guo, Q., Brockerhoff, E. G., Jo, I., Ordonez, K., & Fei, S. (2017). Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biological Invasions, 19, 3287-3299.
  • [30] Daglish, G. J., Nayak, M. K., & Pavic, H. (2014). Phosphine resistance in Sitophilus oryzae (L.) from eastern Australia: Inheritance, fitness and prevalence. Journal of Stored Products Research, 59, 237-244.
  • [31] Hoffmann, A. A., Hallas, R. J., Dean, J. A., & Schiffer, M. (2003). Low potential for climatic stress adaptation in a rainforest Drosophila species. Science, 301(5629), 100-102.
  • [32] Beier, C. M., Patterson, T. M., & Chapin, F. S. (2008). Ecosystem services and emergent vulnerability in managed ecosystems: a geospatial decision-support tool. Ecosystems, 11, 923-938.
  • [33] Downing, A. S., van Nes, E. H., Mooij, W. M., & Scheffer, M. (2012). The resilience and resistance of an ecosystem to a collapse of diversity.
  • [34] Fritz, M. L., Hamby, K. A., Taylor, K., DeYonke, A. M., & Gould, F. (2020). Genome evolution in an agricultural pest following adoption of transgenic crops. bioRxiv, 2020-10.
  • [35] Chambers, J. C., Brooks, M. L., Germino, M. J., Maestas, J. D., Board, D. I., Jones, M. O., & Allred, B. W. (2019). Operationalizing resilience and resistance concepts to address invasive grass-fire cycles. Frontiers in Ecology and Evolution, 7, 185.
  • [36] Birgé, H. E., Allen, C. R., Garmestani, A. S., & Pope, K. L. (2016). Adaptive management for ecosystem services. Journal of Environmental Management, 183, 343-352.
  • [37] James, K., & Bradshaw, K. (2020). Detecting plant species in the field with deep learning and drone technology. Methods in Ecology and Evolution, 11(11), 1509-1519.
  • [38] Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69.
  • [39] Simic Milas, A., Sousa, J. J., Warner, T. A., Teodoro, A. C., Peres, E., Gonçalves, J. A., ... & Woodget, A. (2018). Unmanned Aerial Systems (UAS) for environmental applications special issue preface. International Journal of Remote Sensing, 39(15-16), 4845-4851.
  • [40] Robinson, J. M., Harrison, P. A., Mavoa, S., & Breed, M. F. (2022). Existing and emerging uses of drones in restoration ecology. Methods in Ecology and Evolution, 13(9), 1899-1911.
  • [41] Alsamhi, S. H., Ma, O., Ansari, M. S., & Gupta, S. K. (2019). Collaboration of drone and internet of public safety things in smart cities: An overview of qos and network performance optimization. Drones, 3(1), 13.
  • [42] Ancin‐Murguzur, F. J., Munoz, L., Monz, C., & Hausner, V. H. (2020). Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sensing in Ecology and Conservation, 6(1), 105-113.
  • [43] Cruzan, M. B., Weinstein, B. G., Grasty, M. R., Kohrn, B. F., Hendrickson, E. C., Arredondo, T. M., & Thompson, P. G. (2016). Small unmanned aerial vehicles (micro‐UAVs, drones) in plant ecology. Applications in plant sciences, 4(9), 1600041.
  • [44] Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community- based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481-1507.
  • [45] Rahman, D. A., Sitorus, A. B. Y., & Condro, A. A. (2021). From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones, 6(1), 6.
  • [46] Assmann, J. J., Myers-Smith, I. H., Kerby, J. T., Cunliffe, A. M., & Daskalova, G. N. (2020). Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environmental Research Letters, 15(12), 125002.
  • [47] Barreto, J., Cajaiba, L., Teixeira, J. B., Nascimento, L., Giacomo, A., Barcelos, N., ... & Martins, A. (2021). Drone- monitoring: Improving the detectability of threatened marine megafauna. Drones, 5(1), 14.
  • [48] Brunton, E. A., Leon, J. X., & Burnett, S. E. (2020). Evaluating the efficacy and optimal deployment of thermal infrared and true-colour imaging when using drones for monitoring kangaroos. Drones, 4(2), 20.
  • [49] Jiménez López, J., & Mulero-Pázmány, M. (2019). Drones for conservation in protected areas: Present and future. Drones, 3(1), 10.
  • [50] Bloom, D., Butcher, P. A., Colefax, A. P., Provost, E. J., Cullis, B. R., & Kelaher, B. P. (2019). Drones detect illegal and derelict crab traps in a shallow water estuary. Fisheries Management and Ecology, 26(4), 311-318.
  • [51] Euchi, J. (2021). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems?. Chinese Journal of Aeronautics, 34(2), 182-190.
  • [52] Kelaher, B. P., Colefax, A. P., Tagliafico, A., Bishop, M. J., Giles, A., & Butcher, P. A. (2019). Assessing variation in assemblages of large marine fauna off ocean beaches using drones. Marine and Freshwater Research, 71(1), 68-77.
  • [53] Benayas, J. M. R., Newton, A. C., Diaz, A., & Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. science, 325(5944), 1121-1124.
  • [54] Kollmann, J., Meyer, S. T., Bateman, R., Conradi, T., Gossner, M. M., de Souza Mendonça Jr, M., ... & Weisser, W. W. (2016). Integrating ecosystem functions into restoration ecology—recent advances and future directions. Restoration Ecology, 24(6), 722-730.
  • [55] Restás, Á. (2022). Drone applications fighting COVID-19 pandemic—Towards good practices. Drones, 6(1), 15.
  • [56] Franco, C., & Bouri, N. (2010). Environmental decontamination following a large-scale bioterrorism attack: federal progress and remaining gaps. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 8(2), 107-117.
  • [57] Restás, Á., Szalkai, I., & Óvári, G. (2021). Drone application for spraying disinfection liquid fighting against the covid- 19 pandemic—examining drone-related parameters influencing effectiveness. Drones, 5(3), 58.
  • [58] Kunovjanek, M., & Wankmüller, C. (2021). Containing the COVID-19 pandemic with drones-Feasibility of a drone enabled back-up transport system. Transport Policy, 106, 141-152.
There are 58 citations in total.

Details

Primary Language English
Subjects Intelligent Robotics, Planning and Decision Making
Journal Section Reviews
Authors

Ahmet Koluman 0000-0001-5308-8884

Atakan Konukbay

Publication Date June 27, 2024
Submission Date October 23, 2023
Acceptance Date January 26, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Koluman, A., & Konukbay, A. (2024). Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems. Journal of Smart Systems Research, 5(1), 1-16. https://doi.org/10.58769/joinssr.1379496
AMA Koluman A, Konukbay A. Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems. JoinSSR. June 2024;5(1):1-16. doi:10.58769/joinssr.1379496
Chicago Koluman, Ahmet, and Atakan Konukbay. “Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems”. Journal of Smart Systems Research 5, no. 1 (June 2024): 1-16. https://doi.org/10.58769/joinssr.1379496.
EndNote Koluman A, Konukbay A (June 1, 2024) Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems. Journal of Smart Systems Research 5 1 1–16.
IEEE A. Koluman and A. Konukbay, “Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems”, JoinSSR, vol. 5, no. 1, pp. 1–16, 2024, doi: 10.58769/joinssr.1379496.
ISNAD Koluman, Ahmet - Konukbay, Atakan. “Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems”. Journal of Smart Systems Research 5/1 (June 2024), 1-16. https://doi.org/10.58769/joinssr.1379496.
JAMA Koluman A, Konukbay A. Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems. JoinSSR. 2024;5:1–16.
MLA Koluman, Ahmet and Atakan Konukbay. “Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems”. Journal of Smart Systems Research, vol. 5, no. 1, 2024, pp. 1-16, doi:10.58769/joinssr.1379496.
Vancouver Koluman A, Konukbay A. Decontaminants Used After Biorisk Material Decontamination: Environmental Impact and the Role of Drones in Detection and Remediation of Resistance in Ecosystems. JoinSSR. 2024;5(1):1-16.