Review
BibTex RIS Cite

Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications

Year 2024, Volume: 5 Issue: 1, 55 - 65, 27.06.2024
https://doi.org/10.58769/joinssr.1492524

Abstract

There are different types of elbow orthoses, medical devices engineered to support and stabilize the elbow joint, assisting in recovery from injuries or surgeries, and managing chronic conditions through movement restriction and essential immobilization. The development of elbow orthoses has evolved significantly from rudimentary splints in early medical practices to advanced, custom-fitted devices utilizing modern materials and biomechanical principles. This review provided researchers with a comprehensive overview of the history and development of elbow orthoses. It offered insights into the effectiveness, utilization, and clinical applications of different types of elbow orthotic designs. Additionally, this review contributed to the body of knowledge by comparing traditional and modern elbow orthotic technologies, offering valuable guidance for future research directions in this area of study. Furthermore, this review underscored the challenges and prospects within the field, paving the way for concerted endeavors among academics, healthcare practitioners, and industrial experts to propel the development of elbow orthotic technologies and improve patient results. Thus, researchers potentially could have developed more effective treatment strategies in clinical practice and improved the quality of life for patients.

Project Number

2022-ST-002

Thanks

Special thanks to the ArelMED-I members for their motivations, recommendations and feedback.

References

  • [1] Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. (2005). Gray's anatomy: the anatomical basis of clinical practice. American journal of neuroradiology, 26(10), 2703.
  • [2] Moore, K. L., Dalley, A. F., & Agur, A. M. (2013). Clinically oriented anatomy. Lippincott Williams & Wilkins.
  • [3] Morrey, B. F. (2009). The elbow and its disorders. Elsevier Health Sciences.
  • [4] Fam, A. G., Lawry, G. V., & Kreder, H. J. (2006). Musculoskeletal examination and joint injection techniques. Mosby.
  • [5] Cleland, J., Koppenhaver, S., & Su, J. (2015). Netter's orthopaedic clinical examination: an evidence-based approach. Elsevier Health Sciences.
  • [6] Skirven, T. M., Osterman, A. L., Fedorczyk, J., Amadio, P. C., Felder, S., & Shin, E. K. (2020). Rehabilitation of the hand and upper extremity. Elsevier Health Sciences.
  • [7] Wilk, K. E., & Arrigo, C. (1993). Current concepts in the rehabilitation of the athletic shoulder. Journal of Orthopaedic & Sports Physical Therapy, 18(1), 365-378.
  • [8] Donatelli, R. A., & Wooden, M. J. (2009). Orthopaedic physical therapy. Elsevier health sciences.
  • [9] Di Giacomo, S., Kantar, S. S., Rotini, R., & Porcellini, G. (2018). The Elbow: Principles of Surgical Treatment and Rehabilitation. Springer.
  • [10] Cameron, M. H. (2021). Physical agents in rehabilitation: An evidence-based approach to practice. Elsevier Health Sciences.
  • [11] Jacobs, M. A., Austin, N. M., & Austin, N. M. (2013). Orthotic intervention for the hand and upper extremity: splinting principles and process. Lippincott Williams & Wilkins.
  • [12] Chui, K. K. (2020). Orthotics and prosthetics in Rehabilitation. Elsevier.
  • [13] Placzek, J. D., & Boyce, D. A. (2006). Orthopaedic physical therapy secrets - E-book. Hanley & Belfus.
  • [14] Asadi Dereshgi, H., Dal, H., Demir, D., & Türe, N. F. (2021). Orthoses: A Systematic Review. Journal of Smart Systems Research, 2(2), 135-149.
  • [15] da Silva, J. L. G. F., Gonçalves, S. M. B., da Silva, H. H. P., & da Silva, M. P. T. (2022). Three-dimensional printed exoskeletons and orthoses for the upper limb—A systematic review. Prosthetics and Orthotics International, 10-1097.
  • [16] Chen, B., Lin, J., Liu, L., & Niu, W. (2017). Static progressive orthoses for elbow contracture: a systematic review. Journal of Healthcare Engineering, 2017.
  • [17] Yasukawa, A., Lulinski, J., Thornton, L., & Jaudes, P. (2008). Improving elbow and wrist range of motion using a dynamic and static combination orthosis. JPO: Journal of Prosthetics and Orthotics, 20(2), 41-48.
  • [18] Zahedi, A., Wang, Y., Martinez-Hernandez, U., & Zhang, D. (2021). A wearable elbow exoskeleton for tremor suppression equipped with rotational semi-active actuator. Mechanical Systems and Signal Processing, 157, 107674.
  • [19] Mo, J., & Priefer, R. (2021). Medical devices for tremor suppression: current status and future directions. Biosensors, 11(4), 99.
  • [20] Viscuso, S., Pittaccio, S., Caimmi, M., Gasperini, G., Pirovano, S., Villa, E., ... & Molteni, F. (2009). Pseudoelastic nitinol-based device for relaxation of spastic elbow in stroke patients. Journal of materials engineering and performance, 18, 805-813.
  • [21] Huamanchahua, D., Castañeda-Vásquez, C., Vásquez-Espinoza, A., & Muñoz-Zevallos, A. (2021, December). Robotic Devices Types Exoskeletons for Elbow Rehabilitation: A Technological Review. In 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0791-0796). IEEE.
  • [22] Ameen, S. H. (2016). Manufacturing and numerical analysis of elbow orthosis made of polypropylene–carbon fiber–polypropylene. Journal of Engineering and Sustainable Development, 20(4), 186-199.
  • [23] Webster, J. B., & Murphy, D. P. (2017). Atlas of Orthoses and Assistive Devices E-Book. Elsevier Health Sciences.
  • [24] Kempfer, J., Lewis, R., Fiedler, G., & Silver-Thorn, B. (2022). Prosthetic and orthotic devices. Rehabilitation Engineering: Principles and Practice.
  • [25] Humans, J. M., Postema, K., & Geertzen, J. H. B. (2004). Elbow orthoses: a review of literature. Prosthetics and orthotics international, 28(3), 263-272.
  • [26] Gallucci, G. L., Boretto, J. G., Dávalos, M. A., Alfie, V. A., Donndorff, A., & De Carli, P. (2014). The use of dynamic orthoses in the treatment of the stiff elbow. European Journal of Orthopaedic Surgery & Traumatology, 24, 1395-1400.
  • [27] Wiegand, R., Schmitz, B., Pylatiuk, C., & Schulz, S. (2011). Mechanical performance of actuators in an active orthosis for the upper extremities. Journal of Robotics, 2011.
  • [28] Chinchalkar, S. J., Pearce, J., & Athwal, G. S. (2009). Static progressive versus three-point elbow extension splinting: a mathematical analysis. Journal of Hand Therapy, 22(1), 37-43.
  • [29] Mariscal, G., & Barrios, C. (2024). Assessing Biomechanical and Clinical Outcomes of an Elbow Orthosis Intervention in Youth Baseball: Preliminary Results. Sports, 12(1), 24.
  • [30] Ganesan, S., & Ranganathan, R. (2023). Design and development of customized elbow orthosis using additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(8), 1836-1846.
  • [31] Kacmaz, K. S., & Unver, B. (2024). Immediate effects of elbow orthoses on elbow proprioception in asymptomatic individuals: A randomized sham-controlled single-blinded study. Journal of Hand Therapy.
  • [32] Badre, A., Axford, D. T., Kotzer, S., Johnson, J. A., & King, G. J. (2024). Stabilizing effect of an elbow orthosis with an adjustable hinge axis after lateral collateral ligament injury: A biomechanical study. Shoulder & Elbow, 16(2), 193-199.
  • [33] Cavalcanti, A. M. G., Oliveira Filho, R. S. D., Gomes, H. C., Martins, A. B. D. S., Garcia, E. B., & Ferreira, L. M. (2022). Review of articulated elbow orthotics for joint stiffness rehabilitation. Acta Ortopédica Brasileira, 30(5), e254358.
  • [34] Deharde, M., & Patchel, K. (1997, August 19). Multi-functional dynamic splint.
  • [35] Johnson, G. R., Carus, D. A., Parrini, G., Marchese, S., & Valeggi, R. (2001). The design of a five-degree-of-freedom powered orthosis for the upper limb. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215(3), 275-284.
  • [36] Bahadir, C., Akanirmak, Ü., Bahadir, E., Karacan, I., Şahin, Z., & Korkmaz, Ö. (2005). Hemiplejik hastalarda Bobath askısının fonksiyonel parametreler ve omuz subluksasyonu üzerine etkisi. Haydarpaşa Numune Eğitim ve Araştırma Hastanesi Tıp Dergisi, 45(2), 66- 70.
  • [37] Vanderniepen, I., Van Ham, R., Van Damme, M., & Lefeber, D. (2008, October). Design of a powered elbow orthosis for orthopaedic rehabilitation using compliant actuation. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 801-806). IEEE.
  • [38] Schulz, S., Pylatiuk, C., Kargov, A., Gaiser, I., Schill, O., Reischl, M., ... & Rupp, R. (2009). Design of a hybrid powered upper limb orthosis. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany: Vol. 25/9 Neuroengineering, Neural Systems, Rehabilitation and Prosthetics (pp. 468-471). Springer Berlin Heidelberg.
  • [39] Kesmezacar, H., & Sarikaya, İ. A. (2010). Konservatif tedavi edilen basit dirsek çıkıklarının sonuçları. Acta Orthop Traumatol Turc, 44(3), 199a205.
  • [40] Pau, J. W., Xie, S. S., & Pullan, A. J. (2012). Neuromuscular interfacing: Establishing an EMG-driven model for the human elbow joint. IEEE Transactions on biomedical engineering, 59(9), 2586-2593.
  • [41] Bonutti, P. M., Bonutti, B. P., Ruholl, K. R., & Phillips, G. A. (2009, January 29). Orthosis apparatus and method of using an orthosis apparatus.
  • [42] Cempini, M., Giovacchini, F., Vitiello, N., Cortese, M., Moisé, M., Posteraro, F., & Carrozza, M. C. (2013, July). NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 342-345). IEEE.
  • [43] Ripel, T., Krejsa, J., Hrbacek, J., & Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143.
  • [44] Vitiello, N., Cempini, M., Crea, S., Giovacchini, F., Cortese, M., Moise, M., ... & Carrozza, M. C. (2016). Functional design of a powered elbow orthosis toward its clinical employment. IEEE/ASME Transactions on Mechatronics, 21(4), 1880-1891.
  • [45] Herrnstadt, G., & Menon, C. (2016). Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Frontiers in bioengineering and biotechnology, 4, 29.
  • [46] Ataoğlu, B., Ayanoğlu, T., Elshan, N., Özer, M., Çetinkaya, M., & Eyvazov, K. (2017). Basit Dirsek Çıkıklarında Kapalı Redüksiyon ve Erken Rehabilitasyon Sonuçlarımız. Özgün Araştırmalar/Original Investigations, 128.
  • [47] Cilaci, T., Gözaydinoğlu, Ş., & Uğurlu, Ü. (2018). Rijid Kontraktürleri Olan Lokalize Skleroderma Tanılı Bir Hastanın Rehabilitasyonu. Bezmialem Science, 6(4).
  • [48] Murugan, S. R., Raja, K. S., Prakash, K., & Naveenramkumarb, L. (2018). Rapid prototyping of elbow orthosis in biomedical application. Int J Adv Res Eng Sci Technol, 4, 275-280.
  • [49] Wee, J., Shank, T. M., Castro, M. N., Ryan, L. E., Costa, J., & Rahman, T. (2019, June). Elbow flexion assist orthosis for arthrogryposis. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) (pp. 494-498). IEEE.
  • [50] Bancud, K., Kutilek, P., & Krivanek, V. (2019, September). Design of powered wearable elbow brace for rehabilitation applications at clinic and home. In 2019 European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.
  • [51] Minh, V. T., Tamre, M., Safonov, A., Kovalenko, P., & Monakhov, I. (2020). Design and implementation of a mechatronic elbow orthosis. Mechatronic Systems and Control, 48(4), 231-238.
  • [52] Dindorf, R., & Wos, P. (2020). Using the bioelectric signals to control of wearable orthosis of the elbow joint with bi-muscular pneumatic servo-drive. Robotica, 38(5), 804-818.
  • [53] Bonutti, P. M., Bonutti, B. P., Ruholl, K. R., & Phillips, G. A. (2019, March 5). Pronation/supination orthosis and method.
  • [54] Nikolaev, V. F., Golovin, M. A., Kornil’ev, N. S., & Lityakshev, N. A. (2020, January). Development of an elbow orthotic with elastic elements and distance adaptation control system. In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 151-153). IEEE.
  • [55] Golovin, M. A., & Kornilev, N. S. (2021, May). Development Of An Elbow Orthotic With Elastic Elements. In Assistive Technology (Vol. 33, No. 3, pp. 158-159). 530 Walnut Street, STE 850, Philadelphia, PA 19106 USA: Taylor & Francis INC.
  • [56] Demirsoy, M. S., Kutlu, M. Ç., & Mansour, M. (2022). PID Kontrollü IoT Haberleşme İle Android Tabanlı Egsersiz Takibi. Journal of Smart Systems Research, 3(2), 70-80.
  • [57] Rodriguez, V., Sanchez, L., Palomares, R., & Cornejo, J. (2022, August). Ergonomic bio-design and motion simulation of a mechatronic orthosis system for elbow rehabilitation. In 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON) (pp. 1-4). IEEE.
  • [58] Lavrenko, I., & Lebedynskyi, B. (2022). Determination of the stress-strain state of the structural elements of the elbow orthosis prototype. International Science Journal of Engineering & Agriculture, 1(3), 29-36.
  • [59] Arcos Rosero, J. D., Bolaños Rosero, D. C., Alape Realpe, L. F., Solis Pino, A. F., & Roldán González, E. (2022). Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation. Bioengineering, 9(7), 287.
  • [60] Said, R. R., Yong, W. Q., Heyat, M. B. B., Ali, L., Qiang, S., Ali, A., ... & Wu, Z. (2022). Research Article Design of a Smart Elbow Brace as a Home-Based Rehabilitation Device.
  • [61] Petrov, E., Angelova, S., Raykov, P., & Paunski, Y. (2023). Autonomous Controller for an Active Elbow Orthosis. In Proceedings of the International Scientific Conference “Robotics & Mechatronics 2023” (pp. 1–4).

Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications

Year 2024, Volume: 5 Issue: 1, 55 - 65, 27.06.2024
https://doi.org/10.58769/joinssr.1492524

Abstract

There are different types of elbow orthoses, medical devices engineered to support and stabilize the elbow joint, assisting in recovery from injuries or surgeries, and managing chronic conditions through movement restriction and essential immobilization. The development of elbow orthoses has evolved significantly from rudimentary splints in early medical practices to advanced, custom-fitted devices utilizing modern materials and biomechanical principles. This review provided researchers with a comprehensive overview of the history and development of elbow orthoses. It offered insights into the effectiveness, utilization, and clinical applications of different types of elbow orthotic designs. Additionally, this review contributed to the body of knowledge by comparing traditional and modern elbow orthotic technologies, offering valuable guidance for future research directions in this area of study. Furthermore, this review underscored the challenges and prospects within the field, paving the way for concerted endeavors among academics, healthcare practitioners, and industrial experts to propel the development of elbow orthotic technologies and improve patient results. Thus, researchers potentially could have developed more effective treatment strategies in clinical practice and improved the quality of life for patients.

Project Number

2022-ST-002

Thanks

Special thanks to the ArelMED-I members for their motivations, recommendations and feedback.

References

  • [1] Standring, S., Ellis, H., Healy, J., Johnson, D., Williams, A., Collins, P., & Wigley, C. (2005). Gray's anatomy: the anatomical basis of clinical practice. American journal of neuroradiology, 26(10), 2703.
  • [2] Moore, K. L., Dalley, A. F., & Agur, A. M. (2013). Clinically oriented anatomy. Lippincott Williams & Wilkins.
  • [3] Morrey, B. F. (2009). The elbow and its disorders. Elsevier Health Sciences.
  • [4] Fam, A. G., Lawry, G. V., & Kreder, H. J. (2006). Musculoskeletal examination and joint injection techniques. Mosby.
  • [5] Cleland, J., Koppenhaver, S., & Su, J. (2015). Netter's orthopaedic clinical examination: an evidence-based approach. Elsevier Health Sciences.
  • [6] Skirven, T. M., Osterman, A. L., Fedorczyk, J., Amadio, P. C., Felder, S., & Shin, E. K. (2020). Rehabilitation of the hand and upper extremity. Elsevier Health Sciences.
  • [7] Wilk, K. E., & Arrigo, C. (1993). Current concepts in the rehabilitation of the athletic shoulder. Journal of Orthopaedic & Sports Physical Therapy, 18(1), 365-378.
  • [8] Donatelli, R. A., & Wooden, M. J. (2009). Orthopaedic physical therapy. Elsevier health sciences.
  • [9] Di Giacomo, S., Kantar, S. S., Rotini, R., & Porcellini, G. (2018). The Elbow: Principles of Surgical Treatment and Rehabilitation. Springer.
  • [10] Cameron, M. H. (2021). Physical agents in rehabilitation: An evidence-based approach to practice. Elsevier Health Sciences.
  • [11] Jacobs, M. A., Austin, N. M., & Austin, N. M. (2013). Orthotic intervention for the hand and upper extremity: splinting principles and process. Lippincott Williams & Wilkins.
  • [12] Chui, K. K. (2020). Orthotics and prosthetics in Rehabilitation. Elsevier.
  • [13] Placzek, J. D., & Boyce, D. A. (2006). Orthopaedic physical therapy secrets - E-book. Hanley & Belfus.
  • [14] Asadi Dereshgi, H., Dal, H., Demir, D., & Türe, N. F. (2021). Orthoses: A Systematic Review. Journal of Smart Systems Research, 2(2), 135-149.
  • [15] da Silva, J. L. G. F., Gonçalves, S. M. B., da Silva, H. H. P., & da Silva, M. P. T. (2022). Three-dimensional printed exoskeletons and orthoses for the upper limb—A systematic review. Prosthetics and Orthotics International, 10-1097.
  • [16] Chen, B., Lin, J., Liu, L., & Niu, W. (2017). Static progressive orthoses for elbow contracture: a systematic review. Journal of Healthcare Engineering, 2017.
  • [17] Yasukawa, A., Lulinski, J., Thornton, L., & Jaudes, P. (2008). Improving elbow and wrist range of motion using a dynamic and static combination orthosis. JPO: Journal of Prosthetics and Orthotics, 20(2), 41-48.
  • [18] Zahedi, A., Wang, Y., Martinez-Hernandez, U., & Zhang, D. (2021). A wearable elbow exoskeleton for tremor suppression equipped with rotational semi-active actuator. Mechanical Systems and Signal Processing, 157, 107674.
  • [19] Mo, J., & Priefer, R. (2021). Medical devices for tremor suppression: current status and future directions. Biosensors, 11(4), 99.
  • [20] Viscuso, S., Pittaccio, S., Caimmi, M., Gasperini, G., Pirovano, S., Villa, E., ... & Molteni, F. (2009). Pseudoelastic nitinol-based device for relaxation of spastic elbow in stroke patients. Journal of materials engineering and performance, 18, 805-813.
  • [21] Huamanchahua, D., Castañeda-Vásquez, C., Vásquez-Espinoza, A., & Muñoz-Zevallos, A. (2021, December). Robotic Devices Types Exoskeletons for Elbow Rehabilitation: A Technological Review. In 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0791-0796). IEEE.
  • [22] Ameen, S. H. (2016). Manufacturing and numerical analysis of elbow orthosis made of polypropylene–carbon fiber–polypropylene. Journal of Engineering and Sustainable Development, 20(4), 186-199.
  • [23] Webster, J. B., & Murphy, D. P. (2017). Atlas of Orthoses and Assistive Devices E-Book. Elsevier Health Sciences.
  • [24] Kempfer, J., Lewis, R., Fiedler, G., & Silver-Thorn, B. (2022). Prosthetic and orthotic devices. Rehabilitation Engineering: Principles and Practice.
  • [25] Humans, J. M., Postema, K., & Geertzen, J. H. B. (2004). Elbow orthoses: a review of literature. Prosthetics and orthotics international, 28(3), 263-272.
  • [26] Gallucci, G. L., Boretto, J. G., Dávalos, M. A., Alfie, V. A., Donndorff, A., & De Carli, P. (2014). The use of dynamic orthoses in the treatment of the stiff elbow. European Journal of Orthopaedic Surgery & Traumatology, 24, 1395-1400.
  • [27] Wiegand, R., Schmitz, B., Pylatiuk, C., & Schulz, S. (2011). Mechanical performance of actuators in an active orthosis for the upper extremities. Journal of Robotics, 2011.
  • [28] Chinchalkar, S. J., Pearce, J., & Athwal, G. S. (2009). Static progressive versus three-point elbow extension splinting: a mathematical analysis. Journal of Hand Therapy, 22(1), 37-43.
  • [29] Mariscal, G., & Barrios, C. (2024). Assessing Biomechanical and Clinical Outcomes of an Elbow Orthosis Intervention in Youth Baseball: Preliminary Results. Sports, 12(1), 24.
  • [30] Ganesan, S., & Ranganathan, R. (2023). Design and development of customized elbow orthosis using additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(8), 1836-1846.
  • [31] Kacmaz, K. S., & Unver, B. (2024). Immediate effects of elbow orthoses on elbow proprioception in asymptomatic individuals: A randomized sham-controlled single-blinded study. Journal of Hand Therapy.
  • [32] Badre, A., Axford, D. T., Kotzer, S., Johnson, J. A., & King, G. J. (2024). Stabilizing effect of an elbow orthosis with an adjustable hinge axis after lateral collateral ligament injury: A biomechanical study. Shoulder & Elbow, 16(2), 193-199.
  • [33] Cavalcanti, A. M. G., Oliveira Filho, R. S. D., Gomes, H. C., Martins, A. B. D. S., Garcia, E. B., & Ferreira, L. M. (2022). Review of articulated elbow orthotics for joint stiffness rehabilitation. Acta Ortopédica Brasileira, 30(5), e254358.
  • [34] Deharde, M., & Patchel, K. (1997, August 19). Multi-functional dynamic splint.
  • [35] Johnson, G. R., Carus, D. A., Parrini, G., Marchese, S., & Valeggi, R. (2001). The design of a five-degree-of-freedom powered orthosis for the upper limb. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 215(3), 275-284.
  • [36] Bahadir, C., Akanirmak, Ü., Bahadir, E., Karacan, I., Şahin, Z., & Korkmaz, Ö. (2005). Hemiplejik hastalarda Bobath askısının fonksiyonel parametreler ve omuz subluksasyonu üzerine etkisi. Haydarpaşa Numune Eğitim ve Araştırma Hastanesi Tıp Dergisi, 45(2), 66- 70.
  • [37] Vanderniepen, I., Van Ham, R., Van Damme, M., & Lefeber, D. (2008, October). Design of a powered elbow orthosis for orthopaedic rehabilitation using compliant actuation. In 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 801-806). IEEE.
  • [38] Schulz, S., Pylatiuk, C., Kargov, A., Gaiser, I., Schill, O., Reischl, M., ... & Rupp, R. (2009). Design of a hybrid powered upper limb orthosis. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany: Vol. 25/9 Neuroengineering, Neural Systems, Rehabilitation and Prosthetics (pp. 468-471). Springer Berlin Heidelberg.
  • [39] Kesmezacar, H., & Sarikaya, İ. A. (2010). Konservatif tedavi edilen basit dirsek çıkıklarının sonuçları. Acta Orthop Traumatol Turc, 44(3), 199a205.
  • [40] Pau, J. W., Xie, S. S., & Pullan, A. J. (2012). Neuromuscular interfacing: Establishing an EMG-driven model for the human elbow joint. IEEE Transactions on biomedical engineering, 59(9), 2586-2593.
  • [41] Bonutti, P. M., Bonutti, B. P., Ruholl, K. R., & Phillips, G. A. (2009, January 29). Orthosis apparatus and method of using an orthosis apparatus.
  • [42] Cempini, M., Giovacchini, F., Vitiello, N., Cortese, M., Moisé, M., Posteraro, F., & Carrozza, M. C. (2013, July). NEUROExos: A powered elbow orthosis for post-stroke early neurorehabilitation. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 342-345). IEEE.
  • [43] Ripel, T., Krejsa, J., Hrbacek, J., & Cizmar, I. (2014). Active elbow orthosis. International Journal of Advanced Robotic Systems, 11(9), 143.
  • [44] Vitiello, N., Cempini, M., Crea, S., Giovacchini, F., Cortese, M., Moise, M., ... & Carrozza, M. C. (2016). Functional design of a powered elbow orthosis toward its clinical employment. IEEE/ASME Transactions on Mechatronics, 21(4), 1880-1891.
  • [45] Herrnstadt, G., & Menon, C. (2016). Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Frontiers in bioengineering and biotechnology, 4, 29.
  • [46] Ataoğlu, B., Ayanoğlu, T., Elshan, N., Özer, M., Çetinkaya, M., & Eyvazov, K. (2017). Basit Dirsek Çıkıklarında Kapalı Redüksiyon ve Erken Rehabilitasyon Sonuçlarımız. Özgün Araştırmalar/Original Investigations, 128.
  • [47] Cilaci, T., Gözaydinoğlu, Ş., & Uğurlu, Ü. (2018). Rijid Kontraktürleri Olan Lokalize Skleroderma Tanılı Bir Hastanın Rehabilitasyonu. Bezmialem Science, 6(4).
  • [48] Murugan, S. R., Raja, K. S., Prakash, K., & Naveenramkumarb, L. (2018). Rapid prototyping of elbow orthosis in biomedical application. Int J Adv Res Eng Sci Technol, 4, 275-280.
  • [49] Wee, J., Shank, T. M., Castro, M. N., Ryan, L. E., Costa, J., & Rahman, T. (2019, June). Elbow flexion assist orthosis for arthrogryposis. In 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) (pp. 494-498). IEEE.
  • [50] Bancud, K., Kutilek, P., & Krivanek, V. (2019, September). Design of powered wearable elbow brace for rehabilitation applications at clinic and home. In 2019 European Conference on Mobile Robots (ECMR) (pp. 1-6). IEEE.
  • [51] Minh, V. T., Tamre, M., Safonov, A., Kovalenko, P., & Monakhov, I. (2020). Design and implementation of a mechatronic elbow orthosis. Mechatronic Systems and Control, 48(4), 231-238.
  • [52] Dindorf, R., & Wos, P. (2020). Using the bioelectric signals to control of wearable orthosis of the elbow joint with bi-muscular pneumatic servo-drive. Robotica, 38(5), 804-818.
  • [53] Bonutti, P. M., Bonutti, B. P., Ruholl, K. R., & Phillips, G. A. (2019, March 5). Pronation/supination orthosis and method.
  • [54] Nikolaev, V. F., Golovin, M. A., Kornil’ev, N. S., & Lityakshev, N. A. (2020, January). Development of an elbow orthotic with elastic elements and distance adaptation control system. In 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (pp. 151-153). IEEE.
  • [55] Golovin, M. A., & Kornilev, N. S. (2021, May). Development Of An Elbow Orthotic With Elastic Elements. In Assistive Technology (Vol. 33, No. 3, pp. 158-159). 530 Walnut Street, STE 850, Philadelphia, PA 19106 USA: Taylor & Francis INC.
  • [56] Demirsoy, M. S., Kutlu, M. Ç., & Mansour, M. (2022). PID Kontrollü IoT Haberleşme İle Android Tabanlı Egsersiz Takibi. Journal of Smart Systems Research, 3(2), 70-80.
  • [57] Rodriguez, V., Sanchez, L., Palomares, R., & Cornejo, J. (2022, August). Ergonomic bio-design and motion simulation of a mechatronic orthosis system for elbow rehabilitation. In 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON) (pp. 1-4). IEEE.
  • [58] Lavrenko, I., & Lebedynskyi, B. (2022). Determination of the stress-strain state of the structural elements of the elbow orthosis prototype. International Science Journal of Engineering & Agriculture, 1(3), 29-36.
  • [59] Arcos Rosero, J. D., Bolaños Rosero, D. C., Alape Realpe, L. F., Solis Pino, A. F., & Roldán González, E. (2022). Mechatronic Design of a Prototype Orthosis to Support Elbow Joint Rehabilitation. Bioengineering, 9(7), 287.
  • [60] Said, R. R., Yong, W. Q., Heyat, M. B. B., Ali, L., Qiang, S., Ali, A., ... & Wu, Z. (2022). Research Article Design of a Smart Elbow Brace as a Home-Based Rehabilitation Device.
  • [61] Petrov, E., Angelova, S., Raykov, P., & Paunski, Y. (2023). Autonomous Controller for an Active Elbow Orthosis. In Proceedings of the International Scientific Conference “Robotics & Mechatronics 2023” (pp. 1–4).
There are 61 citations in total.

Details

Primary Language English
Subjects Medical Devices
Journal Section Reviews
Authors

Hamid Asadi Dereshgi 0000-0002-8500-6625

Sezer Biçer

Özge Naz Gürbüz

Dilan Demir 0000-0001-7413-1597

Project Number 2022-ST-002
Publication Date June 27, 2024
Submission Date May 30, 2024
Acceptance Date June 20, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Asadi Dereshgi, H., Biçer, S., Gürbüz, Ö. N., Demir, D. (2024). Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications. Journal of Smart Systems Research, 5(1), 55-65. https://doi.org/10.58769/joinssr.1492524
AMA Asadi Dereshgi H, Biçer S, Gürbüz ÖN, Demir D. Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications. JoinSSR. June 2024;5(1):55-65. doi:10.58769/joinssr.1492524
Chicago Asadi Dereshgi, Hamid, Sezer Biçer, Özge Naz Gürbüz, and Dilan Demir. “Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications”. Journal of Smart Systems Research 5, no. 1 (June 2024): 55-65. https://doi.org/10.58769/joinssr.1492524.
EndNote Asadi Dereshgi H, Biçer S, Gürbüz ÖN, Demir D (June 1, 2024) Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications. Journal of Smart Systems Research 5 1 55–65.
IEEE H. Asadi Dereshgi, S. Biçer, Ö. N. Gürbüz, and D. Demir, “Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications”, JoinSSR, vol. 5, no. 1, pp. 55–65, 2024, doi: 10.58769/joinssr.1492524.
ISNAD Asadi Dereshgi, Hamid et al. “Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications”. Journal of Smart Systems Research 5/1 (June 2024), 55-65. https://doi.org/10.58769/joinssr.1492524.
JAMA Asadi Dereshgi H, Biçer S, Gürbüz ÖN, Demir D. Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications. JoinSSR. 2024;5:55–65.
MLA Asadi Dereshgi, Hamid et al. “Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications”. Journal of Smart Systems Research, vol. 5, no. 1, 2024, pp. 55-65, doi:10.58769/joinssr.1492524.
Vancouver Asadi Dereshgi H, Biçer S, Gürbüz ÖN, Demir D. Advancements and Innovations in Elbow Orthoses: An Extensive Review of Design, Development, and Clinical Applications. JoinSSR. 2024;5(1):55-6.