Research Article
BibTex RIS Cite

METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS

Year 2023, , 135 - 144, 31.12.2023
https://doi.org/10.55930/jonas.1321901

Abstract

The differentiation and integration of an integer order are known as fractional calculus. It is possible to think of the proportional derivative as a generalization of a congruent fractional derivative, which is one of the types of fractional calculus. In this article, utilizing the proportional derivative and its characteristics on the time scale, the method of variation of parameters for the third-order linear nonhomogeneous differential equations is given. Then, an example is provided to illustrate how to apply the provided approach.

Thanks

This research is part of the second author’s master’s thesis, which is carried out at Firat University, Türkiye.

References

  • 1. Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • 2. Agarwal, R., Bohner, M., O'Regan, D. & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • 3. Anderson, D.R. & Georgiev, S.G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • 4. Anderson, D.R. & Ulness, D.J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • 5. Aulbach, B. & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • 6. Benkhettou, N., Brito da Cruz, A. M. C. & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • 7. Benkhettou, N., Hassani, S. & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • 8. Bohner, M. & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • 9. Bohner, M. & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • 10. Bohner, M. & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Cham: Springer.
  • 11. Gulsen, T., Yilmaz, E. & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • 12. Gülşen, T., Yilmaz, E. & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • 13. Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in Mathematics, 18(1).
  • 14. Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • 15. Khalil, R., Horani, M. Al., Yousef, A. & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • 16. Li, Y., Ang, K. H. & Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • 17. Ortigueira, M. D. & Machado, J. T. (2015). What is a fractional derivative?. Journal of Computational Physics, 293, 4-13.
  • 18. Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • 19. Yilmaz, E., Gulsen, T. & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.
Year 2023, , 135 - 144, 31.12.2023
https://doi.org/10.55930/jonas.1321901

Abstract

References

  • 1. Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • 2. Agarwal, R., Bohner, M., O'Regan, D. & Peterson, A. (2002). Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.
  • 3. Anderson, D.R. & Georgiev, S.G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and Hall/CRC.
  • 4. Anderson, D.R. & Ulness, D.J. (2015). Newly defined conformable derivatives. Advances in Dynamical Systems and Applications, 10(2), 109-137.
  • 5. Aulbach, B. & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, Amsterdam.
  • 6. Benkhettou, N., Brito da Cruz, A. M. C. & Torres, D. F. M. (2015). A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237.
  • 7. Benkhettou, N., Hassani, S. & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time scales. Journal of King Saud University (Science), 28(1), 93-98.
  • 8. Bohner, M. & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. Boston, MA: Birkhauser.
  • 9. Bohner, M. & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.
  • 10. Bohner, M. & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Cham: Springer.
  • 11. Gulsen, T., Yilmaz, E. & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of Inequalities and Applications, 2017(1), 161.
  • 12. Gülşen, T., Yilmaz, E. & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360.
  • 13. Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results in Mathematics, 18(1).
  • 14. Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2.
  • 15. Khalil, R., Horani, M. Al., Yousef, A. & Sababheh, M. (2014). A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264, 57–66.
  • 16. Li, Y., Ang, K. H. & Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • 17. Ortigueira, M. D. & Machado, J. T. (2015). What is a fractional derivative?. Journal of Computational Physics, 293, 4-13.
  • 18. Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time scales. Advances in Difference Equations, 2019 (1), 1-16.
  • 19. Yilmaz, E., Gulsen, T. & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System on Time Scales in Quantum Physics, Applied and Computational Mathematics an International Journal, 21(3), 279-291.
There are 19 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Tuba Gülşen 0000-0002-2288-8050

Mehmet Acar 0000-0003-1280-8034

Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Gülşen, T., & Acar, M. (2023). METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS. Bartın University International Journal of Natural and Applied Sciences, 6(2), 135-144. https://doi.org/10.55930/jonas.1321901
AMA Gülşen T, Acar M. METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS. JONAS. December 2023;6(2):135-144. doi:10.55930/jonas.1321901
Chicago Gülşen, Tuba, and Mehmet Acar. “METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS”. Bartın University International Journal of Natural and Applied Sciences 6, no. 2 (December 2023): 135-44. https://doi.org/10.55930/jonas.1321901.
EndNote Gülşen T, Acar M (December 1, 2023) METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS. Bartın University International Journal of Natural and Applied Sciences 6 2 135–144.
IEEE T. Gülşen and M. Acar, “METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS”, JONAS, vol. 6, no. 2, pp. 135–144, 2023, doi: 10.55930/jonas.1321901.
ISNAD Gülşen, Tuba - Acar, Mehmet. “METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS”. Bartın University International Journal of Natural and Applied Sciences 6/2 (December 2023), 135-144. https://doi.org/10.55930/jonas.1321901.
JAMA Gülşen T, Acar M. METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS. JONAS. 2023;6:135–144.
MLA Gülşen, Tuba and Mehmet Acar. “METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS”. Bartın University International Journal of Natural and Applied Sciences, vol. 6, no. 2, 2023, pp. 135-44, doi:10.55930/jonas.1321901.
Vancouver Gülşen T, Acar M. METHOD OF VARIATION OF PARAMETERS FOR THE THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC EQUATIONS. JONAS. 2023;6(2):135-44.