Research Article
BibTex RIS Cite

BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ

Year 2019, Volume: 2 Issue: 2, 228 - 238, 31.12.2019

Abstract

Bu
çalışmanın amacı, iki arpa (Hordeum vulgare L.) genotipinde (Tarm-92 ve
Tokak 157/37) kurşun toksisitesinin (1.5 mM PbNO3) etkilerinin
klorofil a floresansı tekniği ile araştırılmasıdır. Her iki arpa genotipinde
kurşun uygulaması ile kök ve gövde büyümesi ile toplam bitki boyu inhibe
edilmiştir. Gövde büyümesindeki inhibisyon, muhtemelen yapraklardaki kurşun
birikimi nedeniyle, toplam bitki boyundaki azalmadan sorumlu bulunmuştur. Diğer
yandan, klorofil a floresansı ölçümleri ile gösterildiği üzere, her iki arpa
genotipinde fotosistem II aktivitesi kurşun uygulaması sonucunda azalmıştır.
Sonuçlarımız Tokak 157/37 ile karşılaştırıldığında, kurşun toksisitesi
altındaki Tarm-92’deki reaksiyon merkezlerinde daha fazla hasarın oluştuğunu
göstermiştir. Ayrıca kurşun uygulaması Tarm-92’de  kinonA’nın indirgenmesini sağlayan yakalanan
enerji miktarını ve ısı olarak dağıtılan enerji miktarını artırmış, kinonA’ dan
sonraki maksimum elektron taşınım hızını azaltmıştır. Bu sonuçlar kurşun stresi
altındaki Tarm-92’nin  absorbladığı
ışığın büyük kısmını kullanamayıp ısı olarak dağıttığını ve sonuçta fotosistem
II aktivitesinin azaldığını göstermektedir. Ancak Tokak 157/37’de  daha az enerji ısı olarak dağıtılmakta ve
TRo/RC ile ETo/RC’deki değişimlerle ispatlandığı gibi daha yüksek fotosistem II
aktivitesi belirlenmiştir. Sonuç olarak, kurşun toksisitesi şartlarında daha
yüksek fotosistem II aktivitesine sahip olduğu için Tokak 157/37’nin  Tarm-92 ile karşılaştırıldığında kurşuna daha
toleranslı olduğu söylenebilir.     

Supporting Institution

Sakarya Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı

Project Number

2011-50-01-026

Thanks

Bu çalışma Sakarya Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı tarafından 2011-50-01-026 numaralı proje ile desteklenmiştir.

References

  • 1. Adamia G., Khatisashvili G., Varazashvili T., Pruidze M., Ananniasshvili T., Gvakharia V., Adamia T. & Gordeziani M. (2003). Determination of the type and rate of soil contamination with heavy metals and organic toxicants on the territories of military proving grounds in Georgia. Bull Georg Acad Sci, 167, 155-158.
  • 2. An Y. (2006). Assessment of comparative of lead and copper using plant assay. Chemosphere, 62, 1359-1365.
  • 3. Angelone M. & Bini C. (1992). Biogeochemistry of trace metals, Lewis Publishers, Boca Raton, London.
  • 4. Bilal S., Khan A.L., Kim Y.H., Imran M., Khan M.J., Al-Harrasi A., Kim T.H. & Lee I.J. (2018). Mechanisms of Cr (VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr (VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicol Environ Safety, 164, 648–658.
  • 5. Björkman O. & Demmig B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. Planta, 170, 489-504.
  • 6. Bussotti F., Strasser R.J. & Schaub M. (2007). Photosynthetic behaviour of woody species under high ozone exposure probed with the JIP-test: a review. Environ Pollut 147, 430–437.
  • 7. Cohen S.M. (2001). Lead poisoining: a summary of treatment and prevention. Pediatr Nutr 27, 125-130.
  • 8. Elumalai R.P., Nagpal P. & Reed J.W. (2002). A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 14, 119-1313.
  • 9. Ernst W.H.O., Nielsseni H.G.M. & Ten Bookum W.M. (2000). Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotypes of Silene vulgaris on polymetallic soils. Environ Exp Bot, 43, 55-71.
  • 10. Georgieva K. & Lichtenthaler H.K. (1999). Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol 155, 416-423.
  • 11. Gupta D.K., Nicoloso F.T., Schetinger M.R.C., Rossato L.V., Pereira L.B., Castro G.Y., Srivastava S. & Tripathi R.D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater, 172, 479-484.
  • 12. Kalaji H.M., Govindjee Bosa K., Koscielniak J. & Zuk-Golaszewska K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Env Exp Bot, 73, 64-72.
  • 13. Kovalchuk I., Titov V., Hohn B. & Kovalchuk O. (2005). Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res. Fund Mol Med, 570, 149-161.
  • 14. Kupper H., Kupper F. & Spiller M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot, 47, 259-266.
  • 15. Malkowski E., Kita A., Galas W., Karcz W. & Kuperberg J.M. (2002). Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37, 69-76.
  • 16. Maxwell K. & Johnson G.N. (2000). Chlorophyll fluorescence-A practical guide. J Exp Bot 51, 659-668.
  • 17. Oukarroum A., Bussotti F., Goltsev V. & Kalaji H.M. (2015). Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Env Exp Bot, 109, 80-88.
  • 18. Pereira W.E., de Siqueira D.L., Martinez C.A. & Puiatt M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminum stress. J Plant Physiol, 157, 513–520.
  • 19. Qufei L. & Fashui H. (2009). Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res, 129, 251-260.
  • 20. Rusin V.Y. (1988). Lead and its compounds, Khimiya, Leningrad.
  • 21. Schüzendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L. & Polle A. (2001). Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol, 127, 887-898.
  • 22. Shadid M., Dumat C., Silvestre J. & Pinelli E. (2012). Effect of fulvic acid on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils, 48, 689-697.
  • 23. Singh R., Tripathi R.D., Dwivedi S., Kumar A., Trivedi P.K. & Chakrabarty D. (2010). Lead bioaccumulation potential of on aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol, 101, 3025-3032.
  • 24. Sobotik M., Ivanov V.B., Obroucheva N.V., Seregin I.V., Martin M.L., Antipova O.V. & Bergmann H. (1998). Barrier role in root systems in lead-exposed plants. J App Bot, 72, 144-147.
  • 25. Şahin, S. (2001). Türkiye’de Mısır Ekim Alanlarının Dağılışı ve Mısır Üretimi. G.Ü. Gazi Eğitim Fakültesi Dergisi 1, 73-90.
  • 26. Verma, S. & Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci, 164, 645-655.
  • 27. Wang C.R., Wang X.R., Tian Y., Yu H.X., Gu X.Y., Du W.C. & Zhou H. (2008). Oxidative stress, defence response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem, 27, 970-977.
  • 28. Xiong Z.T., Zhao F. & Li M.J. (2006). Lead toxicity in Brassica pekinensis Rupr. effect on nitrate assmilation and growth. Environ Toxicol, 21, 147-153.

EVALUATION OF LEAD TOLERANCE IN SOME BARLEY GENOTYPES BY MEANS OF CHLOROPHYLL A FLUORESCENCE

Year 2019, Volume: 2 Issue: 2, 228 - 238, 31.12.2019

Abstract

Heavy
metals are grouped with regard to their density. They can be found naturally in the
soil
because of weathering and other processes on rocks. However, because of
industrialization and a rapid population increase, production of anthropogenic
biosolids and agrochemical waste has been enhancing the risk of heavy metal
contamination in soils. This is one of the main environmental problems, keeping
in mind that metals reach the soil and end up depreciating the whole area. In
toxic concentrations, heavy metals damage plants and organisms, affecting their
organs, changing their biochemical processes, organelles, cellular membranes,
and causing health problems. Most of the heavy metals are persistent in soil
because of their immobile nature. The main heavy metals present in soil are
Cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), chrome (Cr),

nickel
(Ni), barium (Ba), argon (Ag), cobalt (Co), mercury (Hg), and antimony (Sb),
and some of these

elements
are essential for many physiological functions in plants, whereas others have
no

known
biological function
. Lead is widespread toxic element having
no role in biological metabolism. The major source of Pb in the environment
includes metal smelting, agriculture, industry, and urban activities. In
plants, excess Pb inhibits germination of seeds, growth of plants, synthesis of
chlorophyll and photosynthesis. Photosynthesis has been reported to be one of
the most sensitive process against Pb toxicity.
The most modern
and sensitive technique used to measure photosynthesis is chlorophyll a
fluorescence. Chlorophyll a fluorescence measurements provide valuble
information about the stat of photosystem II. One of the important advantages
of this technique is that it enables the determination of stress effects long
before the observing of visible symptoms of any stress factor.
            

 





In this study, the
effect of lead toxicity (1.5 mM PbNO3) in barley (Hordeum vulgare
L.) genotypes (Tarm-92 and Tokak 157/37) was
investigated by means of chlorophyll fluorescence technique. Root and shoot
growth and total plant length were inhibited by lead treatment in the both
barley genotypes. Inhibition of shoot growth was mainly responsible for the
decreased total plant length, probably due to higher level of of lead
accumulation in the barley leaves. Photosystem II efficiency, on the orher
hand, was decreased by lead toxicity in the both barley genotypes, as evaluated
by chlorophyll fluorescence measurement. Our results showed that Tarm-92 had
higher level of damaged reaction centers under lead toxicity as compared to
Tokak 157/37. In addition, lead treatment increased the amount of trapped
energy leading to quinoneA reduction (TRo/RC) and dissipated energy as heat
(DIo/RC) and decreased maximum electron transport flux further than quinoneA
(ETo/RC)in Tarm-92. These results showed that Tarm-92 under lead
stress can not use absorbed light energy and dissipated it as heat, resulting
in the decreased photosystem II activity. In Tokak 157/37, however, less energy
was dissipated as heat and higher photosystem II activity was determined as
confirmed by the changes in TRo/RC and ETo/RC. As a result, it may be concluded
that Tokak 157/37 is more tolerant to lead toxicity because of higher
photosystem II activity under lead toxicity as compared to Tarm-92.

Project Number

2011-50-01-026

References

  • 1. Adamia G., Khatisashvili G., Varazashvili T., Pruidze M., Ananniasshvili T., Gvakharia V., Adamia T. & Gordeziani M. (2003). Determination of the type and rate of soil contamination with heavy metals and organic toxicants on the territories of military proving grounds in Georgia. Bull Georg Acad Sci, 167, 155-158.
  • 2. An Y. (2006). Assessment of comparative of lead and copper using plant assay. Chemosphere, 62, 1359-1365.
  • 3. Angelone M. & Bini C. (1992). Biogeochemistry of trace metals, Lewis Publishers, Boca Raton, London.
  • 4. Bilal S., Khan A.L., Kim Y.H., Imran M., Khan M.J., Al-Harrasi A., Kim T.H. & Lee I.J. (2018). Mechanisms of Cr (VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr (VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicol Environ Safety, 164, 648–658.
  • 5. Björkman O. & Demmig B. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. Planta, 170, 489-504.
  • 6. Bussotti F., Strasser R.J. & Schaub M. (2007). Photosynthetic behaviour of woody species under high ozone exposure probed with the JIP-test: a review. Environ Pollut 147, 430–437.
  • 7. Cohen S.M. (2001). Lead poisoining: a summary of treatment and prevention. Pediatr Nutr 27, 125-130.
  • 8. Elumalai R.P., Nagpal P. & Reed J.W. (2002). A mutation in the Arabidopsis KT2/KUP2 potassium transporter gene affects shoot cell expansion. Plant Cell, 14, 119-1313.
  • 9. Ernst W.H.O., Nielsseni H.G.M. & Ten Bookum W.M. (2000). Combination toxicology of metal-enriched soils: physiological responses of a Zn- and Cd-resistant ecotypes of Silene vulgaris on polymetallic soils. Environ Exp Bot, 43, 55-71.
  • 10. Georgieva K. & Lichtenthaler H.K. (1999). Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. J Plant Physiol 155, 416-423.
  • 11. Gupta D.K., Nicoloso F.T., Schetinger M.R.C., Rossato L.V., Pereira L.B., Castro G.Y., Srivastava S. & Tripathi R.D. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater, 172, 479-484.
  • 12. Kalaji H.M., Govindjee Bosa K., Koscielniak J. & Zuk-Golaszewska K. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Env Exp Bot, 73, 64-72.
  • 13. Kovalchuk I., Titov V., Hohn B. & Kovalchuk O. (2005). Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res. Fund Mol Med, 570, 149-161.
  • 14. Kupper H., Kupper F. & Spiller M. (1996). Environmental relevance of heavy metal substituted chlorophylls using the example of water plants. J Exp Bot, 47, 259-266.
  • 15. Malkowski E., Kita A., Galas W., Karcz W. & Kuperberg J.M. (2002). Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37, 69-76.
  • 16. Maxwell K. & Johnson G.N. (2000). Chlorophyll fluorescence-A practical guide. J Exp Bot 51, 659-668.
  • 17. Oukarroum A., Bussotti F., Goltsev V. & Kalaji H.M. (2015). Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. Env Exp Bot, 109, 80-88.
  • 18. Pereira W.E., de Siqueira D.L., Martinez C.A. & Puiatt M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminum stress. J Plant Physiol, 157, 513–520.
  • 19. Qufei L. & Fashui H. (2009). Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res, 129, 251-260.
  • 20. Rusin V.Y. (1988). Lead and its compounds, Khimiya, Leningrad.
  • 21. Schüzendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L. & Polle A. (2001). Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol, 127, 887-898.
  • 22. Shadid M., Dumat C., Silvestre J. & Pinelli E. (2012). Effect of fulvic acid on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils, 48, 689-697.
  • 23. Singh R., Tripathi R.D., Dwivedi S., Kumar A., Trivedi P.K. & Chakrabarty D. (2010). Lead bioaccumulation potential of on aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol, 101, 3025-3032.
  • 24. Sobotik M., Ivanov V.B., Obroucheva N.V., Seregin I.V., Martin M.L., Antipova O.V. & Bergmann H. (1998). Barrier role in root systems in lead-exposed plants. J App Bot, 72, 144-147.
  • 25. Şahin, S. (2001). Türkiye’de Mısır Ekim Alanlarının Dağılışı ve Mısır Üretimi. G.Ü. Gazi Eğitim Fakültesi Dergisi 1, 73-90.
  • 26. Verma, S. & Dubey, R.S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci, 164, 645-655.
  • 27. Wang C.R., Wang X.R., Tian Y., Yu H.X., Gu X.Y., Du W.C. & Zhou H. (2008). Oxidative stress, defence response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem, 27, 970-977.
  • 28. Xiong Z.T., Zhao F. & Li M.J. (2006). Lead toxicity in Brassica pekinensis Rupr. effect on nitrate assmilation and growth. Environ Toxicol, 21, 147-153.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Articles
Authors

Ali Doğru

Project Number 2011-50-01-026
Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 2 Issue: 2

Cite

APA Doğru, A. (2019). BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ. Bartın University International Journal of Natural and Applied Sciences, 2(2), 228-238.
AMA Doğru A. BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ. JONAS. December 2019;2(2):228-238.
Chicago Doğru, Ali. “BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ”. Bartın University International Journal of Natural and Applied Sciences 2, no. 2 (December 2019): 228-38.
EndNote Doğru A (December 1, 2019) BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ. Bartın University International Journal of Natural and Applied Sciences 2 2 228–238.
IEEE A. Doğru, “BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ”, JONAS, vol. 2, no. 2, pp. 228–238, 2019.
ISNAD Doğru, Ali. “BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ”. Bartın University International Journal of Natural and Applied Sciences 2/2 (December 2019), 228-238.
JAMA Doğru A. BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ. JONAS. 2019;2:228–238.
MLA Doğru, Ali. “BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ”. Bartın University International Journal of Natural and Applied Sciences, vol. 2, no. 2, 2019, pp. 228-3.
Vancouver Doğru A. BAZI ARPA GENOTİPLERİNDE KURŞUN TOLERANSININ KLOROFİL A FLORESANSI İLE DEĞERLENDİRİLMESİ. JONAS. 2019;2(2):228-3.