Bu
çalışmanın amacı, iki arpa (Hordeum vulgare L.) genotipinde (Tarm-92 ve
Tokak 157/37) kurşun toksisitesinin (1.5 mM PbNO3) etkilerinin
klorofil a floresansı tekniği ile araştırılmasıdır. Her iki arpa genotipinde
kurşun uygulaması ile kök ve gövde büyümesi ile toplam bitki boyu inhibe
edilmiştir. Gövde büyümesindeki inhibisyon, muhtemelen yapraklardaki kurşun
birikimi nedeniyle, toplam bitki boyundaki azalmadan sorumlu bulunmuştur. Diğer
yandan, klorofil a floresansı ölçümleri ile gösterildiği üzere, her iki arpa
genotipinde fotosistem II aktivitesi kurşun uygulaması sonucunda azalmıştır.
Sonuçlarımız Tokak 157/37 ile karşılaştırıldığında, kurşun toksisitesi
altındaki Tarm-92’deki reaksiyon merkezlerinde daha fazla hasarın oluştuğunu
göstermiştir. Ayrıca kurşun uygulaması Tarm-92’de kinonA’nın indirgenmesini sağlayan yakalanan
enerji miktarını ve ısı olarak dağıtılan enerji miktarını artırmış, kinonA’ dan
sonraki maksimum elektron taşınım hızını azaltmıştır. Bu sonuçlar kurşun stresi
altındaki Tarm-92’nin absorbladığı
ışığın büyük kısmını kullanamayıp ısı olarak dağıttığını ve sonuçta fotosistem
II aktivitesinin azaldığını göstermektedir. Ancak Tokak 157/37’de daha az enerji ısı olarak dağıtılmakta ve
TRo/RC ile ETo/RC’deki değişimlerle ispatlandığı gibi daha yüksek fotosistem II
aktivitesi belirlenmiştir. Sonuç olarak, kurşun toksisitesi şartlarında daha
yüksek fotosistem II aktivitesine sahip olduğu için Tokak 157/37’nin Tarm-92 ile karşılaştırıldığında kurşuna daha
toleranslı olduğu söylenebilir.
Sakarya Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı
2011-50-01-026
Bu çalışma Sakarya Üniversitesi Bilimsel Araştırma Projeleri Komisyonu Başkanlığı tarafından 2011-50-01-026 numaralı proje ile desteklenmiştir.
Heavy
metals are grouped with regard to their density. They can be found naturally in the
soil
because of weathering and other processes on rocks. However, because of
industrialization and a rapid population increase, production of anthropogenic
biosolids and agrochemical waste has been enhancing the risk of heavy metal
contamination in soils. This is one of the main environmental problems, keeping
in mind that metals reach the soil and end up depreciating the whole area. In
toxic concentrations, heavy metals damage plants and organisms, affecting their
organs, changing their biochemical processes, organelles, cellular membranes,
and causing health problems. Most of the heavy metals are persistent in soil
because of their immobile nature. The main heavy metals present in soil are
Cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), chrome (Cr),
nickel
(Ni), barium (Ba), argon (Ag), cobalt (Co), mercury (Hg), and antimony (Sb),
and some of these
elements
are essential for many physiological functions in plants, whereas others have
no
known
biological function. Lead is widespread toxic element having
no role in biological metabolism. The major source of Pb in the environment
includes metal smelting, agriculture, industry, and urban activities. In
plants, excess Pb inhibits germination of seeds, growth of plants, synthesis of
chlorophyll and photosynthesis. Photosynthesis has been reported to be one of
the most sensitive process against Pb toxicity. The most modern
and sensitive technique used to measure photosynthesis is chlorophyll a
fluorescence. Chlorophyll a fluorescence measurements provide valuble
information about the stat of photosystem II. One of the important advantages
of this technique is that it enables the determination of stress effects long
before the observing of visible symptoms of any stress factor.
In this study, the
effect of lead toxicity (1.5 mM PbNO3) in barley (Hordeum vulgare
L.) genotypes (Tarm-92 and Tokak 157/37) was
investigated by means of chlorophyll fluorescence technique. Root and shoot
growth and total plant length were inhibited by lead treatment in the both
barley genotypes. Inhibition of shoot growth was mainly responsible for the
decreased total plant length, probably due to higher level of of lead
accumulation in the barley leaves. Photosystem II efficiency, on the orher
hand, was decreased by lead toxicity in the both barley genotypes, as evaluated
by chlorophyll fluorescence measurement. Our results showed that Tarm-92 had
higher level of damaged reaction centers under lead toxicity as compared to
Tokak 157/37. In addition, lead treatment increased the amount of trapped
energy leading to quinoneA reduction (TRo/RC) and dissipated energy as heat
(DIo/RC) and decreased maximum electron transport flux further than quinoneA
(ETo/RC)in Tarm-92. These results showed that Tarm-92 under lead
stress can not use absorbed light energy and dissipated it as heat, resulting
in the decreased photosystem II activity. In Tokak 157/37, however, less energy
was dissipated as heat and higher photosystem II activity was determined as
confirmed by the changes in TRo/RC and ETo/RC. As a result, it may be concluded
that Tokak 157/37 is more tolerant to lead toxicity because of higher
photosystem II activity under lead toxicity as compared to Tarm-92.
2011-50-01-026
Primary Language | Turkish |
---|---|
Subjects | Structural Biology |
Journal Section | Articles |
Authors | |
Project Number | 2011-50-01-026 |
Publication Date | December 31, 2019 |
Published in Issue | Year 2019 Volume: 2 Issue: 2 |