Research Article
BibTex RIS Cite

Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers

Year 2021, Volume: 18 Issue: 2, 260 - 272, 01.05.2021
https://doi.org/10.33462/jotaf.750623

Abstract

Bu çalışmada, üç farklı sıcaklıkta (60, 70 ve 80°C) kurutulan organik ve geleneksel olarak üretilen tatlı kırmızı biberlerin (Capsicum annum L.) kızılötesi kurutma kinetikleri, efektif nem difüzyonu, aktivasyon enerjisi ve renk kaliteleri karşılaştırılmıştır. Araştırma sonucunda, organik ve geleneksel tatlı kırmızı biberlerin kızılötesi kurutma sürecinin tamamının temel olarak azalan hızlı kurutma periyodunda meydana geldiği saptanmıştır. Kurutma sıcaklığındaki artışa bağlı olarak ürün kuruma süresi önemli ölçüde kısalmıştır. Organik ve geleneksel kırmızı biberlerin kurutma süreleri arasında anlamlı bir fark bulunmamıştır. Organik ve konvansiyonel biberlerin kuruma davranışına ilişkin tüm verilerin matematiksel olarak ifade edilmesinde Midilli modelinin in iyi sonuçları veren model olduğu belirlenmiştir. Midilli modelinin kurutma katsayısının kurutma sıcaklığındaki artışa bağlı olarak arttığı saptanmıştır. Organik biber örneklerinin efektif nem difüzyonu ve aktivasyon enerjisi değerlerinin geleneksel biber örneklerine ait değerlerden biraz daha yüksek olduğu belirlenmiştir. Bu sonucun Midilli modelinin kurutma katsayısı ve karakteristik kurutma hızı eğrileri ile uyum içinde olduğu saptanmıştır. Yüksek sıcaklıklarda kızılötesi kurutma ile tüketiciler tarafından daha çok tercih edilen, daha parlak renkte toz kırmızı biberler üretilebileceği belirlenmiştir. Organik biber örnekleri için 60°C'de kızılötesi kurutma uygulaması ile ürün renk kalitesi bakımından en iyi kırmızı toz biberlerin üretilebileceği saptanmıştır. Ayrıca, taze kırmızı biberlerin rengine en yakın renk kırmızılığı oranlarına ve taze kırmızı biberlerden daha yüksek parlaklık değerlerine sahip olan kırmızı biber tozları ürettikleri için, 60°C ve 70°C sıcaklıklarda kızılötesi ile kurutma uygulamaları da renk kalitesi bakımından kabul edilebilir kurutma uygulamaları olarak değerlendirilmiştir. Sonuç olarak, 60°C yerine 70°C'de kurutma uygulaması ile ürün kurutma süresinde yaklaşık % 22 tasarruf sağlamış olup, bu uygulamanın yüksek kaliteli organik veya geleneksel tatlı toz kırmızı biber üretmek için kullanılabileceği saptanmıştır.

References

  • Arimboor, R., Natarajan, R. B., Menon, K. R., Chandrasekhar, L. P., & Moorkoth, V. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 52(3), 1258-1271.
  • Arslan, D., Ozcan, M. M., 2011. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing, 89: 504-513.
  • Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E., 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air dried marionberry, strawberry and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237–1241.
  • Cao, Z., Zhou, L., Bi, J., Yi, J., Chen, Q., Wu, X., Zheng, J., Li, S., 2016. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96: 3596-3603.
  • Chua, K.J. and Chou, S.K., 2003. Low-cost drying methods for developing countries. Trends in Food Science and Technology, 14: 519-528.
  • Crank, J., 1975. Mathematics of Diffusion. 2nd ed. Oxford University Press, London, pp. 414.
  • Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., Khodaei, J., 2014. Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13: 130-138.
  • Darvishi, H., Khoshtaghaza, M. H., Najafi, G., Nargesi, F., 2013. Mathematical modeling of green pepper drying in microwave-convective dryer. Journal of Agricultural Science and Technology, 15: 457-465.
  • Deng, L.Z., Yang, X.H., Mujumdar, A.S., Zhao, J.H., Qian, D.W., Zhang, J.W., Gao, Z.J. Xiao, H.W., 2018. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity and microstructure. Drying Technology, 36(8): 893-907.
  • Di Scala, K., & Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT-Food Science and Technology, 41(5), 789-795.
  • Diamente, L. M., Munro, P. A., 1993. Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51: 271-276.
  • Doymaz, I., & Kocayigit, F. (2012). Effect of pre-treatments on drying, rehydration, and color characteristics of red pepper (‘Charliston’variety). Food Science and Biotechnology, 21(4), 1013-1022.
  • Doymaz, I., Ismail, O., 2011. Drying characteristics of sweet cherry. Food and Bioproducts Procesing, 89: 31-38.
  • FAO (2019). FAOSTAT Crop production statistics database. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.
  • Ergunes G; Tarhan S., 2006. Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. Journal of Food Engineering, 76, 446–452.
  • Ertekin, C, Yaldiz, O., 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63: 349-359.
  • Ertekin, C., Heybeli, N., 2014. Thin-layer infrared drying of mint leaves. Journal of Food Processing and Preservation, 38: 1480-1490.
  • Gomiero. T. 2018. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Applied Soil Ecology 123: 714–728.
  • Jain, D., Pathare, P. B., 2004. Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 89: 289-296.
  • Kadam DM, Goyal RK, Singh KK, Gupta MK (2011). Thin layer convective drying of mint leaves. Journal Med. Plant Res., 5(2): 164-170.
  • Keskin, M., Setlek, P., Demir, S., 2017. Use of Color Measurement Systems in Food Science and Agriculture. International Advanced Researches & Engineering Congress. 16-18 November 2017. Osmaniye, Turkey. pp.2350-2359 (Abstract in English).
  • Keskin M, Y Soysal, A Arslan, YE Sekerli, N Celiktas. (2018). Predicting Drying Temperature of Infrared-Dried Pepper Powders Using FT-NIRS and Chromameter. International Conference on Energy Research (ENRES2018), Alanya, Turkey, pp.305-319.
  • Keskin M., Y. Soysal, Y.E. Sekerli, A. Arslan, N. Celiktas. 2019. Assessment of applied microwave power of intermittent microwave-dried carrot powders from Colour and NIRS. Agronomy Research. 17(2):466-480.
  • Kim S; Park J B; Hwang I K, 2002. Quality attributes of various varieties Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure. Journal of Food Science, 67, 2957–2961.
  • Kim, S., Park, J., & Hwang, I. K. (2004). Composition of main carotenoids in Korean red pepper (Capsicum annuum L.) and changes of pigment stability during the drying and storage process. Journal of Food Science, 69(1), 39–44.
  • Kumar, N., Sarkar, B. C., Sharma, H. K., 2011. Effect of air velocity on kinetics of thin layer carrot pomace drying. Food Sci. Technol. Int. 17: 439–447.
  • Lernoud, J., & Willer, H. (2019). Organic Agriculture Worldwide: Key results from the FiBL survey on organic agriculture worldwide Part 3: Organic agriculture in the regions. Research Institute of Organic Agriculture (FIBL), Frick, Switzerland.
  • Madamba, P. S., Driscoll, R. H., Buckle, K. A., 1996. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1): 75–97.
  • Maskan A, Kaya S, Maskan M (2002). Hot air and sun drying of grape leather (pestil). J. Food Eng., 54: 81-88.
  • Midilli, A., Kucuk, H.; Yapar, Z., 2002. A new model for single-layer drying. Drying Technology, 20: 1503-1513.
  • Nasiroglu, S., Kocabiyik, H., 2007. Thin-layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering, 33: 1-16.
  • Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science & Emerging Technologies, 5(3), 353-360.
  • Onwude, D.I., Hashim, N., Chen, G., 2016. Review: Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57: 132-145.
  • Pawar, S. B., & Pratape, V. M. (2017). Fundamentals of infrared heating and its application in drying of food materials: a review. Journal of Food Process Engineering, 40(1), e12308.
  • Rizvi, S. S. H. 1986. Thermodynamic properties of foods in dehydration. In: Engineering Properties of Foods, (M.A. Rao and S.S.H. Rizvi, eds.), Marcel Dekker, New York, pp. 190-193.
  • Sablani, S. S., Andrews, P. K., Davies, N. M., Walters, T., Saez, H. and Bastarrachea, L., 2011. Effects of air and freeze drying on phytochemical content of conventional and organic berries. Drying Technology. 29:205–216.
  • Sandu, C. (1986). Infrared radiative drying in food engineering: a process analysis. Biotechnology Progress, 2(3), 109-119.
  • Sanjuan, N., Lozano, M., Garcia-Pascual, P., Mulet, A., 2003. Dehydration kinetics of red pepper (Capsicum annuum L. var Jaranda). J. Sci. Food Agri. 83: 697–701.
  • Saravacos, G. D., 1986. Mass transfer properties of foods. In: Rao, M. A., Rizvi, S. S. H., editors. Engineering properties of foods. New York: Marcel Dekker Inc. p 89-132.
  • Soysal, Y., Ayhan, Z., Eştürk, O., & Arıkan, M. F. (2009). Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Engineering, 103(4), 455-463.
  • Soysal, Y., Keskin, M,, Arslan, A., Sekerli, Y.E., 2018. Infrared Drying Characteristics of Pepper at Different Maturity Stages. International Conference on Energy Research (ENRES 2018), 31 October - 2 November 2018, Alanya, Turkey.
  • Soysal, Y., Oztekin, S., Eren, Ö., 2006. Microwave drying of parsley: Modeling, kinetics, and energy aspects. Biosystems Engineering, 93: 403-413.
  • Soysal, Y., Oztekin, S., Isıkber, A. A., Duman, A. D., Dayısoylu, K. S., 2005. Assessing the colour quality attributes of Turkish red chilli peppers (Capsicum annuum L.) and colour stability during storage. In Proceedings of the 9th International Congress on Mechanization and Energy in Agriculture. Izmir, Turkey, pp. 99–104.
  • Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., Soponronnarit, S., 2011. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT, 44(6): 1502-1510.
  • TMAF (2019). Organic agricultural production data. Turkish Ministry of Agriculture and Forestry (TMAF).
  • Topuz, A., Dincer, C., Özdemir K. S, Feng H, Kushad, M., 2011. Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chemistry. 129 (3), 860-865.
  • Tunde-Akintunde, T. Y., Oyelade, O. J., Akintunde, B. O., 2014. Effect of drying temperatures and pre-treatments on drying characteristics, energy consumption, and quality of bell pepper. Agric Eng Int: CIGR Journal, 16(2): 108-118.
  • Turhan, M., Turhan, K. N., Sahbaz, F., 1997. Drying kinetics of red pepper. J. Food Process Preserv. 21: 209–223.
  • TurkStat, 2018. Organic crop production statistics - 2018. Turkish Statistical Institute (TurkStat).
  • Vega-Gálvez, A. L. M. S., Lemus-Mondaca, R., Bilbao-Sáinz, C., Fito, P., & Andrés, A. (2008). Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal of Food Engineering, 85(1), 42-50.
  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653.
  • Verma, L. R., Bucklin, R. A., Endan, J. B., Wratten, F. T., 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28: 296-301.
  • Wang, C. Y., Singh, R. P., 1978. A single layer drying equation for rough rice. ASAE Annual Conference, paper no. 3001.
  • Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X., 2007. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot-air pre-drying. Journal of Food Engineering, 80: 536-544.
  • Winter, C. K., & Davis, S. F. (2006). Organic foods. Journal of Food Science, 71(9), R117-R124.
  • Yagcioglu, A., Degirmencioglu, A., Cagatay, F., 1999. Drying characteristics of laurel leaves under different drying conditions. Proceedings of 7th International Congress on Agricultural Mechanization and Energy in Agriculture, Adana, Turkey, pp. 565-569.
  • Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D., 1996. Moisture diffusivity data compilation in food stuffs. Drying Technology. 14(10), 2225–2253.

Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers

Year 2021, Volume: 18 Issue: 2, 260 - 272, 01.05.2021
https://doi.org/10.33462/jotaf.750623

Abstract

This study compares the infrared drying kinetics, effective moisture diffusivity, activation energy and color qualities of organically and conventionally produced sweet red peppers (Capsicum annum L.) dried at three different temperatures (60, 70 and 80°C). Results showed that the entire drying process for both organic and conventional sweet red peppers took place mainly in falling rate period. Increasing the drying temperature decreased the drying time considerably. No significant difference was found between the drying times of organic and conventional red peppers. The Midilli model yielded the best fit for all data points for organic and conventional peppers. The drying coefficient of the Midilli model increased with the increase in the drying temperature. The effective moisture diffusivity and activation energy values of organic pepper samples were found slightly higher than those of the conventional samples. This result was found to be compatible with the drying coefficient of Midilli model and characteristic drying rate curves. Higher drying temperatures resulted in brighter red pepper powder color which is more preferable by consumers. Infrared drying at 60°C for organic pepper samples produced the best pepper powders in terms of color quality. Moreover, infrared drying at 60°C and 70°C was also judged as the acceptable drying applications in terms of color quality since they gave the nearest redness to yellowness ratios and higher brightness values as compared to the color of fresh peppers. Overall, infrared drying at 70°C instead of 60°C resulted in about 22% savings in drying time and can be used to produce high quality organic or conventional sweet red pepper powder with better color quality.

References

  • Arimboor, R., Natarajan, R. B., Menon, K. R., Chandrasekhar, L. P., & Moorkoth, V. (2015). Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. Journal of Food Science and Technology, 52(3), 1258-1271.
  • Arslan, D., Ozcan, M. M., 2011. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing, 89: 504-513.
  • Asami, D.K., Hong, Y.J., Barrett, D.M., Mitchell, A.E., 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air dried marionberry, strawberry and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51, 1237–1241.
  • Cao, Z., Zhou, L., Bi, J., Yi, J., Chen, Q., Wu, X., Zheng, J., Li, S., 2016. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study. Journal of the Science of Food and Agriculture, 96: 3596-3603.
  • Chua, K.J. and Chou, S.K., 2003. Low-cost drying methods for developing countries. Trends in Food Science and Technology, 14: 519-528.
  • Crank, J., 1975. Mathematics of Diffusion. 2nd ed. Oxford University Press, London, pp. 414.
  • Darvishi, H., Asl, A. R., Asghari, A., Azadbakht, M., Najafi, G., Khodaei, J., 2014. Study of the drying kinetics of pepper. Journal of the Saudi Society of Agricultural Sciences, 13: 130-138.
  • Darvishi, H., Khoshtaghaza, M. H., Najafi, G., Nargesi, F., 2013. Mathematical modeling of green pepper drying in microwave-convective dryer. Journal of Agricultural Science and Technology, 15: 457-465.
  • Deng, L.Z., Yang, X.H., Mujumdar, A.S., Zhao, J.H., Qian, D.W., Zhang, J.W., Gao, Z.J. Xiao, H.W., 2018. Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity and microstructure. Drying Technology, 36(8): 893-907.
  • Di Scala, K., & Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT-Food Science and Technology, 41(5), 789-795.
  • Diamente, L. M., Munro, P. A., 1993. Mathematical modeling of the thin layer solar drying of sweet potato slices. Solar Energy, 51: 271-276.
  • Doymaz, I., & Kocayigit, F. (2012). Effect of pre-treatments on drying, rehydration, and color characteristics of red pepper (‘Charliston’variety). Food Science and Biotechnology, 21(4), 1013-1022.
  • Doymaz, I., Ismail, O., 2011. Drying characteristics of sweet cherry. Food and Bioproducts Procesing, 89: 31-38.
  • FAO (2019). FAOSTAT Crop production statistics database. Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy.
  • Ergunes G; Tarhan S., 2006. Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. Journal of Food Engineering, 76, 446–452.
  • Ertekin, C, Yaldiz, O., 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63: 349-359.
  • Ertekin, C., Heybeli, N., 2014. Thin-layer infrared drying of mint leaves. Journal of Food Processing and Preservation, 38: 1480-1490.
  • Gomiero. T. 2018. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Applied Soil Ecology 123: 714–728.
  • Jain, D., Pathare, P. B., 2004. Selection and evaluation of thin layer drying models for infrared radiative and convective drying of onion slices. Biosystems Engineering, 89: 289-296.
  • Kadam DM, Goyal RK, Singh KK, Gupta MK (2011). Thin layer convective drying of mint leaves. Journal Med. Plant Res., 5(2): 164-170.
  • Keskin, M., Setlek, P., Demir, S., 2017. Use of Color Measurement Systems in Food Science and Agriculture. International Advanced Researches & Engineering Congress. 16-18 November 2017. Osmaniye, Turkey. pp.2350-2359 (Abstract in English).
  • Keskin M, Y Soysal, A Arslan, YE Sekerli, N Celiktas. (2018). Predicting Drying Temperature of Infrared-Dried Pepper Powders Using FT-NIRS and Chromameter. International Conference on Energy Research (ENRES2018), Alanya, Turkey, pp.305-319.
  • Keskin M., Y. Soysal, Y.E. Sekerli, A. Arslan, N. Celiktas. 2019. Assessment of applied microwave power of intermittent microwave-dried carrot powders from Colour and NIRS. Agronomy Research. 17(2):466-480.
  • Kim S; Park J B; Hwang I K, 2002. Quality attributes of various varieties Korean red pepper powders (Capsicum annuum L.) and color stability during sunlight exposure. Journal of Food Science, 67, 2957–2961.
  • Kim, S., Park, J., & Hwang, I. K. (2004). Composition of main carotenoids in Korean red pepper (Capsicum annuum L.) and changes of pigment stability during the drying and storage process. Journal of Food Science, 69(1), 39–44.
  • Kumar, N., Sarkar, B. C., Sharma, H. K., 2011. Effect of air velocity on kinetics of thin layer carrot pomace drying. Food Sci. Technol. Int. 17: 439–447.
  • Lernoud, J., & Willer, H. (2019). Organic Agriculture Worldwide: Key results from the FiBL survey on organic agriculture worldwide Part 3: Organic agriculture in the regions. Research Institute of Organic Agriculture (FIBL), Frick, Switzerland.
  • Madamba, P. S., Driscoll, R. H., Buckle, K. A., 1996. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1): 75–97.
  • Maskan A, Kaya S, Maskan M (2002). Hot air and sun drying of grape leather (pestil). J. Food Eng., 54: 81-88.
  • Midilli, A., Kucuk, H.; Yapar, Z., 2002. A new model for single-layer drying. Drying Technology, 20: 1503-1513.
  • Nasiroglu, S., Kocabiyik, H., 2007. Thin-layer infrared radiation drying of red pepper slices. Journal of Food Process Engineering, 33: 1-16.
  • Nowak, D., & Lewicki, P. P. (2004). Infrared drying of apple slices. Innovative Food Science & Emerging Technologies, 5(3), 353-360.
  • Onwude, D.I., Hashim, N., Chen, G., 2016. Review: Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57: 132-145.
  • Pawar, S. B., & Pratape, V. M. (2017). Fundamentals of infrared heating and its application in drying of food materials: a review. Journal of Food Process Engineering, 40(1), e12308.
  • Rizvi, S. S. H. 1986. Thermodynamic properties of foods in dehydration. In: Engineering Properties of Foods, (M.A. Rao and S.S.H. Rizvi, eds.), Marcel Dekker, New York, pp. 190-193.
  • Sablani, S. S., Andrews, P. K., Davies, N. M., Walters, T., Saez, H. and Bastarrachea, L., 2011. Effects of air and freeze drying on phytochemical content of conventional and organic berries. Drying Technology. 29:205–216.
  • Sandu, C. (1986). Infrared radiative drying in food engineering: a process analysis. Biotechnology Progress, 2(3), 109-119.
  • Sanjuan, N., Lozano, M., Garcia-Pascual, P., Mulet, A., 2003. Dehydration kinetics of red pepper (Capsicum annuum L. var Jaranda). J. Sci. Food Agri. 83: 697–701.
  • Saravacos, G. D., 1986. Mass transfer properties of foods. In: Rao, M. A., Rizvi, S. S. H., editors. Engineering properties of foods. New York: Marcel Dekker Inc. p 89-132.
  • Soysal, Y., Ayhan, Z., Eştürk, O., & Arıkan, M. F. (2009). Intermittent microwave–convective drying of red pepper: Drying kinetics, physical (colour and texture) and sensory quality. Biosystems Engineering, 103(4), 455-463.
  • Soysal, Y., Keskin, M,, Arslan, A., Sekerli, Y.E., 2018. Infrared Drying Characteristics of Pepper at Different Maturity Stages. International Conference on Energy Research (ENRES 2018), 31 October - 2 November 2018, Alanya, Turkey.
  • Soysal, Y., Oztekin, S., Eren, Ö., 2006. Microwave drying of parsley: Modeling, kinetics, and energy aspects. Biosystems Engineering, 93: 403-413.
  • Soysal, Y., Oztekin, S., Isıkber, A. A., Duman, A. D., Dayısoylu, K. S., 2005. Assessing the colour quality attributes of Turkish red chilli peppers (Capsicum annuum L.) and colour stability during storage. In Proceedings of the 9th International Congress on Mechanization and Energy in Agriculture. Izmir, Turkey, pp. 99–104.
  • Thuwapanichayanan, R., Prachayawarakorn, S., Kunwisawa, J., Soponronnarit, S., 2011. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT, 44(6): 1502-1510.
  • TMAF (2019). Organic agricultural production data. Turkish Ministry of Agriculture and Forestry (TMAF).
  • Topuz, A., Dincer, C., Özdemir K. S, Feng H, Kushad, M., 2011. Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chemistry. 129 (3), 860-865.
  • Tunde-Akintunde, T. Y., Oyelade, O. J., Akintunde, B. O., 2014. Effect of drying temperatures and pre-treatments on drying characteristics, energy consumption, and quality of bell pepper. Agric Eng Int: CIGR Journal, 16(2): 108-118.
  • Turhan, M., Turhan, K. N., Sahbaz, F., 1997. Drying kinetics of red pepper. J. Food Process Preserv. 21: 209–223.
  • TurkStat, 2018. Organic crop production statistics - 2018. Turkish Statistical Institute (TurkStat).
  • Vega-Gálvez, A. L. M. S., Lemus-Mondaca, R., Bilbao-Sáinz, C., Fito, P., & Andrés, A. (2008). Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal of Food Engineering, 85(1), 42-50.
  • Vega-Gálvez, A., Di Scala, K., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J., & Perez-Won, M. (2009). Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653.
  • Verma, L. R., Bucklin, R. A., Endan, J. B., Wratten, F. T., 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28: 296-301.
  • Wang, C. Y., Singh, R. P., 1978. A single layer drying equation for rough rice. ASAE Annual Conference, paper no. 3001.
  • Wang, Z., Sun, J., Chen, F., Liao, X., Hu, X., 2007. Mathematical modeling on thin layer microwave drying of apple pomace with and without hot-air pre-drying. Journal of Food Engineering, 80: 536-544.
  • Winter, C. K., & Davis, S. F. (2006). Organic foods. Journal of Food Science, 71(9), R117-R124.
  • Yagcioglu, A., Degirmencioglu, A., Cagatay, F., 1999. Drying characteristics of laurel leaves under different drying conditions. Proceedings of 7th International Congress on Agricultural Mechanization and Energy in Agriculture, Adana, Turkey, pp. 565-569.
  • Zogzas, N.P., Maroulis, Z.B., Marinos-Kouris, D., 1996. Moisture diffusivity data compilation in food stuffs. Drying Technology. 14(10), 2225–2253.
There are 57 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Aysel Arslan 0000-0002-0060-0263

Yurtsever Soysal 0000-0003-0871-8570

Muharrem Keskin 0000-0002-2649-6855

Publication Date May 1, 2021
Submission Date June 10, 2020
Acceptance Date November 6, 2020
Published in Issue Year 2021 Volume: 18 Issue: 2

Cite

APA Arslan, A., Soysal, Y., & Keskin, M. (2021). Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers. Tekirdağ Ziraat Fakültesi Dergisi, 18(2), 260-272. https://doi.org/10.33462/jotaf.750623
AMA Arslan A, Soysal Y, Keskin M. Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers. JOTAF. May 2021;18(2):260-272. doi:10.33462/jotaf.750623
Chicago Arslan, Aysel, Yurtsever Soysal, and Muharrem Keskin. “Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers”. Tekirdağ Ziraat Fakültesi Dergisi 18, no. 2 (May 2021): 260-72. https://doi.org/10.33462/jotaf.750623.
EndNote Arslan A, Soysal Y, Keskin M (May 1, 2021) Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers. Tekirdağ Ziraat Fakültesi Dergisi 18 2 260–272.
IEEE A. Arslan, Y. Soysal, and M. Keskin, “Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers”, JOTAF, vol. 18, no. 2, pp. 260–272, 2021, doi: 10.33462/jotaf.750623.
ISNAD Arslan, Aysel et al. “Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers”. Tekirdağ Ziraat Fakültesi Dergisi 18/2 (May 2021), 260-272. https://doi.org/10.33462/jotaf.750623.
JAMA Arslan A, Soysal Y, Keskin M. Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers. JOTAF. 2021;18:260–272.
MLA Arslan, Aysel et al. “Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 18, no. 2, 2021, pp. 260-72, doi:10.33462/jotaf.750623.
Vancouver Arslan A, Soysal Y, Keskin M. Infrared Drying Kinetics and Color Qualities of Organic and Conventional Sweet Red Peppers. JOTAF. 2021;18(2):260-72.