Research Article
BibTex RIS Cite

Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi

Year 2021, Volume: 18 Issue: 3, 482 - 493, 07.09.2021
https://doi.org/10.33462/jotaf.842302

Abstract

Tarımsal faaliyetler ve bileşenleri büyük oranda iklimsel olaylara dayanır. Özellikle sıcaklık ve CO2 düzeylerindeki yükselme tarımsal üretimin geleceğini belirleyen en önemli parametredir. Dünya atmosferinde CO2 miktarının giderek artması, sera etkisi yapan diğer gazlarla birlikte global iklim değişikliğine ve sıcaklığın artmasına neden olmaktadır. Yine bu değişimlerin yanında düzensiz mevsimler, kuraklık, toprak verimliliğinin azalması ve erozyon, su kaynaklarında azalma, doğal bitki örtüsündeki değişim, gıda yetersizliği/güvenliği, hastalıkların ve zararlıların yaygınlaşması iklim değişikliğinin olumsuz etkileri arasında yer almaktadır. Bu olumsuzluklar Dünya ve Türkiye açısından önemli düzeyde risk oluşturmaktadır. Türkiye’de yetiştiriciliği oldukça eski dönemlere dayanan zeytin bitkisinin Güneydoğu Anadolu Bölgesi’nde son dönemlerde tarımı, kullanımı ve ticareti hızla ivme kazanmıştır. Bu nedenle yapılan bu araştırmada zeytin bitkisinin yetiştiği ortamlarda topraktan çıkan CO2 emisyonuna etki eden faktörlerin (sıcaklık ve nem) incelenmesi ve ölçülmesi amaçlanmıştır. Araştırma Harran Üniversitesi Eyyubiye kampüsünde zeytin bitkisinin yetiştiği alanda 56 hafta süresince 3 tekrarlı olarak 5 örnekleme alanında yürütülmüştür. Çalışma alanı topraklarının bazı fiziksel ve kimyasal özellikleri de bu çalışma kapsamında belirlenmiştir. İklimsel veriler, inceleme alanında kurulan Decagon data logger (5 TE, EM50 Data Logger) ile 30 dakika bir süre ile ölçülmüştür. Topraktan CO2 çıkışı Soda-Lime yöntemi ile ölçülmüştür. Analizlerde R (CorLevelPlot package) Minitab 17 istatistik paket programı kullanılmıştır. Araştırma sonuçlarına göre, topraktan salınan CO2 emisyonu üzerine toprak sıcaklığının etkisi toprak neminin etkisinden daha fazla olduğu saptanmıştır. Topraktan CO2 çıkışı toprak sıcaklığı ile doğru (r2=0.695, p<0.05), toprak nemi ile ters (r2= -0.626, p<0.05) bir korelasyon saptanmıştır. Toprak sıcaklığı 6ºC’nin altına düştüğünde topraktan çıkan CO2 miktarının minimum düzeyde olduğu ve bu noktanın da kritik toprak sıcaklık noktası olduğu belirlenmiştir. Araştırma topraklarında CO2 çıkışı, farklı derinlik, nem ve sıcaklık miktarlarına bağlı değişmekle beraber ortalama 55.56 g CO2 m-2 hafta-1 olarak saptanmıştır.

References

  • Açıkbaş, B., Bellitürk, K. (2016). Vermikompostun 5BB Üzerine Aşılı Trakya İlkeren Asma Fidanlarının Bitki Besin Elementleri İçerikleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 13 (4), 131-138.
  • Anonim (2019). Meteoroloji Genel Müdürlüğü. Şanlıurfa İli İklim Verileri, Ankara, https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=SANLIURFA, (Erişim tarihi: 23.09.2020)
  • Allison, LE, Moodie, C E. (1965). Carbonate. In: C.A, Black et al (ed). Metods of Soils Analysis. Part 2. Agronomy 9 (1). Am. Soc. of Argon., Inc., Madison, pp. 1379 – 1400, Wisconson U.S.A.
  • Almagro, M., López, J., Querejeta, J I., Martínez-Mena, M. (2009). Temperature Dependence of Soil CO2 Efflux is Strongly Modulated by Seasonal Patterns of Moisture Availability in a Mediterranean Ecosystem. Soil Biology and Biochemistry 41 (3): 594-605.
  • Almaraz, JJ., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B L., Smith, D L. (2009). Greenhouse Gas Fluxes Associated with Soybean Production under Two Tillage Systems in Southwestern Quebec. Soil and Tillage Research 104 (1): 134-139.
  • Angert, A., Yakır, D., Rodeghıero, M., Preisler, Y., Davidson, E A., Weiner, T. (2015). Using O2 to Study the Relationships between Soil CO2 Efflux and Soil Respiration. Biogeosciences 12: 2089–2099.
  • Bauer, J., Weihermüller, L., Huisman, J A., Herbst, M., Graf, A., Sequarıs, J., Vereecken, H. (2012). Inverse Determination of Heterotrophic Soil Respiration Response to Temperature and Water Content under Field Conditions. Biogeochemistry 108:119–134.
  • Bellitürk, K. (2018). Some Evaluations about Use of Vermicompost in Agricultural Activity of Thrace Region, Turkey: A Review. Journal of Rice Research 6 (2): 1000193.
  • Bellitürk, K., Kuzucu, M., Çelik, A., Baran, M F. (2019). Antep Fıstığında (Pistacia Vera L.) Kuru Koşullarda Gübrelemenin Verim ve Kaliteye Etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 16 (2), 251-259.
  • Bellitürk, K. (2019). Asit ve Düşük Organik Madde İçeren Toprakların Islahı: Trakya Bölgesi Örneği. Kireç Dünyası 5 (10): 19-22.
  • Black, CA. (1965). Methods of Soil Analysis, Part II, American Soci. of Agroninc. Pub. No: 9 Madison WI, USA.
  • Bouyoucus, G J. (1951). A Recalibration of the Hydrometer for Making Mechanical Analysis of Soils. Agron Jour 3: 434 -438.
  • Çelik, A., Sakin, E. (2017). Comparing Surface Carbon Concentrations and Some Parameters of the Soils on Which Medicinal and Aromatic Plants Grow. Applied Ecology and Environmental Research 15 (3): 1057-1068. Çelik, A., İnan, M., Sakin, E., Büyük, G., Kırpık, M., Akça, E. (2017). Changes in soil properties following shifting from rainfed to irrigated agriculture: the Adıyaman case. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (2), 80-86.
  • Çelik A., (2018). Carbon Dioxide Emission Measurement of Soils Where Some Medical and Aromatic Plants are Grown. International Scientific Research Congress (UBAK). 09-13 May 2018, Mardin, Turkey, 169-170.
  • Çimrin, K M., Yalçın, M., Keleş, N. (2019). Gaziantep ili Nizip ilçesi zeytin bahçeleri topraklarının bor durumunun belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24 (1), 1-6.
  • Dignac, M F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Hedde, M. (2017). Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agronomy for Sustainable Development 37 (2): 14-21.
  • Dilekoglu, M F., Sakin, E. (2017a). The effect of temperature and humidity in soil carbon dioxide emission. The J Anim Plant Science 27 (5):1596-1603.
  • Dilekoglu, M F., Sakin, E. (2017B). Determination of carbon emissions in shallow soil of Harran plain, Turkey. Applied Ecology and Environmental Research 15 (4): 675-682.
  • Edwards, N T. (1982). The Use of Soda-Lime for Measuring Respiration Rates in Terrestrial Systems. Pedobiologia 23 (5): 321-330.
  • Forrester, J A., Mladenoff, J D., Gower, S T., Stoffel, J L. (2012). Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. Forest Ecology and Management 265:124–132.
  • Frank, A B., Liebeg, M A., Tanaka, D L. (2006). Managment effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil and Tillage Research 89:78-85.
  • Giardina, C P., Litton, C M., Crow, S E., Asner, G P. (2014). Warming-Related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change 4: 822–827.
  • Goncharova, O., Matyshak, G., Udovenko, M., Semenyuk, O., Epstein, H., Bobrik, A. (2020). Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. CATENA 185: 104299.
  • Göçmez, S., Bellitürk, K., Görres, H. J., Turan, H.S., Üstündağ, Ö., Solmaz, Y., Adiloğlu, A., (2019). The Effects of the Use of Vermicompost in Olive Tree Farming on Microbiological and Biochemical Characteristics of the Production Material, Erwerbs-Obstbau, Springer Berlin Heidelberg, pp:1-8.
  • Görres, J H., Martin, C., Nouri-Aiin, M., Bellitürk, K. (2019). Physical properties of soils altered by invasive pheretimoid earthworms: does their casting layer create thermal refuges? Soil Systems 3 (3): 1-13).
  • Grogan, P. (1998). CO2 Flux Measurement Using Soda Lime: Correction for Water Formed During CO2 Adsorption. Ecology 79: 1467-1468.
  • Gülle Sakin, E D., Saylan, L., Sakin, E., Altun, Ş B., Yeşilköy, S. (2015). Carbon Emission from Soil and Meteorological Variables: A Case Study in Sanliurfa. 4th International Soil and Water Resources Congress. 01-04 September, Maras /Turkey.
  • Herbst, M., Hellebrand, H J. (2008). Multiyear Heterotrophic Soil Respiration: Evaluation of Acoupled CO2 Transport and Carbon Turnover Model. Ecol Model 214 (2–4):271–283.
  • Horneck, D A., Hart, J M., Topper, K., Koepsell, B. (1989). Methods of Soil Analysis Used in the Soil Testing Laboratory at Oregon State University. 1-21, State of Oregon, University Publication USA.
  • Jae, J., Tompsett, G A., Foster, A J., Hammond, K D., Auerbach, S M., Lobo, R F., Huber, G W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis 279(2): 257-268.
  • Karaağaç, H A., Baran, M F., Mart, D., Bolat, A., Eren, Ö. (2019). Nohut üretiminde enerji kullanım etkinliği ve sera gazı (ghg) emisyonunun belirlenmesi (Adana ili örneği). Avrupa Bilim ve Teknoloji Dergisi (16): 41-50.
  • Keith, H., Wong, S C. (2006). Measurement of soil CO2 efflux using soda lime absorption: Both quantitative and reliable. Soil Biology & Biochemistry 38:1121–1131.
  • Lal, R., Kimble, J M. (1997). Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49 (1-3): 243-253.
  • Liu, W., Zhang, Z., Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195.
  • Lou, Y., Li, Z., Zhang, T., Liang, Y. (2004). CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry 36(11): 1835-1842.
  • Luo, Y., Zhou, X. (2006). Soil Respiration and the Environment. Academic Press, San Diego, CA.
  • Maier, M., Schack-Kirchner, H., Hildebrand, E E., Holst, J. (2010). Pore-Space CO2 dynamics in a deep, well-aerated doil. Eur J Soil Sci 61: 877–88.
  • Nelson, D W., Sommers, L E. (1982). Total Carbon, Organic Carbon and Organic Matter. Madison, Wisconsin, pp 539 – 579, USA.
  • Nowak, D J., Crane, D E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental pollution 116 (3): 381-389.
  • Raich, J W., Schlesinger, W H. (1992). The Global Carbondioxide Flux in Soil Respiration and its Relationship to Vegetation and Climate. Tellus 44B: 81–99.
  • Rey, A., Pegoraro, E., Oyonatre, C., Were, A., Escribano, P., Raimundo, J. (2011). Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semiarid ecosystem in the SE of Spain. Soil Biology and Biochemistry 43:393-403.
  • Sakin, E., Sakin, E D. (2015). Harran Ovasının killi topraklarında karbon emisyonun ölçülmesi. GAP VII. Tarım Kongresi. 28 Nisan – 1 Mayıs 2015, Şanlıurfa.
  • Sakin, E., Yanardag, I H. (2019). Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa Region SE Turkey. Fresen Environ Bull 28 (4): 2553-2560.
  • Sakin, E. (2016). Seasonal variations of carbon emissions in uncultivated soils. Oxidation Communication 39 (2): 1374-1384.
  • Schimel, D., Melillo, J., Tian, H., McGuire, A D., Kicklighter, D., Kittel, T., Parton, W. (2000). Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science 287: 2004-2006.
  • Sugihara, S., Funakawa, S., Kilasara, M., Kosaki, T. (2012). Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biology & Biochemistry 46: 1-9.
  • Uzel, N K., Çimrin, K M. (2020). Gaziantep ili Nizip ilçesi zeytin bahçelerinin yaprak ve toprak örnekleri ile beslenme durumunun belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(4), 1039-1053.
  • Vanhala, P., Fritze, H., Neuvonen, S. (1996). Prolonged simulated acid rain treatment in the subarctic: effect on the soil respiration rate and microbial biomass. Biology and Fertility of Soils 23 (1): 7-14.
  • Wu, H J., Lee, X H. (2011). Short-term effects of rain on soil respiration in two new England forests. Plant and Soil 338: 329–342.
  • Xu, X., Luo, X. (2012). Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 170: 118–126.
  • Yaldız, G., Şekeroğlu, N. (2013). Küresel iklim değişikliğinde tıbbi ve aromatik bitkilerin önemi. Türk Bilimsel Derlemeler Dergisi 6(1): 85-88.
  • Zimmermann, M., Conen, J L F., Bird, M I., Meir, P. (2012). Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? Biogeochemistry 107:423–436.

Measurement of CO2 Emissions in the Semi - Arid Region Conditions in the Soil where the Olive Plant Grows

Year 2021, Volume: 18 Issue: 3, 482 - 493, 07.09.2021
https://doi.org/10.33462/jotaf.842302

Abstract

Agricultural activities and their components are largely based on climatic events. Especially the rise in temperature and CO2 levels is the most important parameter that determines the future of agricultural production. Increasing amount of CO2 in the world atmosphere causes global climate change and temperature increase together with other gases that cause greenhouse effect. In addition to these changes, irregular seasons, drought, decrease in soil fertility and erosion, decrease in water resources, change in natural vegetation, food insufficiency / security, spread of diseases and pests are among the negative effects of climate change. These problems pose a risk in terms of significant world and Turkey. Agriculture use and trade of the olive plant, the cultivation of which dates back to very old eras in Turkey, has gained momentum in the Southeastern Anatolia Region recently. For this reason, in this study, it is aimed to examine and measure the factors (temperature and humidity) affecting the CO2 emission from the soil in the environments where the olive plant grows. The research has been carried out in Harran University Eyyubiye campus in 5 sampling areas with 3 repetitions for 56 weeks in the area where the olive plant grows. Some physical and chemical properties of the study area soils were determined. The climatic data were determined for a period of 30 minutes with the Decagon data logger (5 TE, EM50 Data Logger) installed in the study area. CO2 output from soil has been measured by the Soda-Lime method. In the analysis, R (CorLevelPlot package) Minitab 17 statistics package program has been used. According to the results of the research, it has been determined that the effect of the soil temperature on the CO2 emission released from the soil is higher than the effect of the soil moisture. It has been determined that CO2 output from soil correlated directly with soil temperature (r2 = 0.695, p <0.05) and correlated inversely with soil moisture (r2 = -0.626, p <0.05). It has been determined that when the soil temperature drops below 6 ºC, the amount of CO2 released from the soil is at a minimum level, and this point is the critical soil temperature point. Although the CO2 output in the research soils varies depending on the different depth, moisture and temperature amounts, the average was determined as 55.56 g CO2 m-2 weeks-1.

References

  • Açıkbaş, B., Bellitürk, K. (2016). Vermikompostun 5BB Üzerine Aşılı Trakya İlkeren Asma Fidanlarının Bitki Besin Elementleri İçerikleri Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 13 (4), 131-138.
  • Anonim (2019). Meteoroloji Genel Müdürlüğü. Şanlıurfa İli İklim Verileri, Ankara, https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=SANLIURFA, (Erişim tarihi: 23.09.2020)
  • Allison, LE, Moodie, C E. (1965). Carbonate. In: C.A, Black et al (ed). Metods of Soils Analysis. Part 2. Agronomy 9 (1). Am. Soc. of Argon., Inc., Madison, pp. 1379 – 1400, Wisconson U.S.A.
  • Almagro, M., López, J., Querejeta, J I., Martínez-Mena, M. (2009). Temperature Dependence of Soil CO2 Efflux is Strongly Modulated by Seasonal Patterns of Moisture Availability in a Mediterranean Ecosystem. Soil Biology and Biochemistry 41 (3): 594-605.
  • Almaraz, JJ., Zhou, X., Mabood, F., Madramootoo, C., Rochette, P., Ma, B L., Smith, D L. (2009). Greenhouse Gas Fluxes Associated with Soybean Production under Two Tillage Systems in Southwestern Quebec. Soil and Tillage Research 104 (1): 134-139.
  • Angert, A., Yakır, D., Rodeghıero, M., Preisler, Y., Davidson, E A., Weiner, T. (2015). Using O2 to Study the Relationships between Soil CO2 Efflux and Soil Respiration. Biogeosciences 12: 2089–2099.
  • Bauer, J., Weihermüller, L., Huisman, J A., Herbst, M., Graf, A., Sequarıs, J., Vereecken, H. (2012). Inverse Determination of Heterotrophic Soil Respiration Response to Temperature and Water Content under Field Conditions. Biogeochemistry 108:119–134.
  • Bellitürk, K. (2018). Some Evaluations about Use of Vermicompost in Agricultural Activity of Thrace Region, Turkey: A Review. Journal of Rice Research 6 (2): 1000193.
  • Bellitürk, K., Kuzucu, M., Çelik, A., Baran, M F. (2019). Antep Fıstığında (Pistacia Vera L.) Kuru Koşullarda Gübrelemenin Verim ve Kaliteye Etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 16 (2), 251-259.
  • Bellitürk, K. (2019). Asit ve Düşük Organik Madde İçeren Toprakların Islahı: Trakya Bölgesi Örneği. Kireç Dünyası 5 (10): 19-22.
  • Black, CA. (1965). Methods of Soil Analysis, Part II, American Soci. of Agroninc. Pub. No: 9 Madison WI, USA.
  • Bouyoucus, G J. (1951). A Recalibration of the Hydrometer for Making Mechanical Analysis of Soils. Agron Jour 3: 434 -438.
  • Çelik, A., Sakin, E. (2017). Comparing Surface Carbon Concentrations and Some Parameters of the Soils on Which Medicinal and Aromatic Plants Grow. Applied Ecology and Environmental Research 15 (3): 1057-1068. Çelik, A., İnan, M., Sakin, E., Büyük, G., Kırpık, M., Akça, E. (2017). Changes in soil properties following shifting from rainfed to irrigated agriculture: the Adıyaman case. Toprak Bilimi ve Bitki Besleme Dergisi, 5 (2), 80-86.
  • Çelik A., (2018). Carbon Dioxide Emission Measurement of Soils Where Some Medical and Aromatic Plants are Grown. International Scientific Research Congress (UBAK). 09-13 May 2018, Mardin, Turkey, 169-170.
  • Çimrin, K M., Yalçın, M., Keleş, N. (2019). Gaziantep ili Nizip ilçesi zeytin bahçeleri topraklarının bor durumunun belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 24 (1), 1-6.
  • Dignac, M F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu, C., Hedde, M. (2017). Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agronomy for Sustainable Development 37 (2): 14-21.
  • Dilekoglu, M F., Sakin, E. (2017a). The effect of temperature and humidity in soil carbon dioxide emission. The J Anim Plant Science 27 (5):1596-1603.
  • Dilekoglu, M F., Sakin, E. (2017B). Determination of carbon emissions in shallow soil of Harran plain, Turkey. Applied Ecology and Environmental Research 15 (4): 675-682.
  • Edwards, N T. (1982). The Use of Soda-Lime for Measuring Respiration Rates in Terrestrial Systems. Pedobiologia 23 (5): 321-330.
  • Forrester, J A., Mladenoff, J D., Gower, S T., Stoffel, J L. (2012). Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. Forest Ecology and Management 265:124–132.
  • Frank, A B., Liebeg, M A., Tanaka, D L. (2006). Managment effects on soil CO2 efflux in northern semiarid grassland and cropland. Soil and Tillage Research 89:78-85.
  • Giardina, C P., Litton, C M., Crow, S E., Asner, G P. (2014). Warming-Related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change 4: 822–827.
  • Goncharova, O., Matyshak, G., Udovenko, M., Semenyuk, O., Epstein, H., Bobrik, A. (2020). Temporal dynamics, drivers, and components of soil respiration in urban forest ecosystems. CATENA 185: 104299.
  • Göçmez, S., Bellitürk, K., Görres, H. J., Turan, H.S., Üstündağ, Ö., Solmaz, Y., Adiloğlu, A., (2019). The Effects of the Use of Vermicompost in Olive Tree Farming on Microbiological and Biochemical Characteristics of the Production Material, Erwerbs-Obstbau, Springer Berlin Heidelberg, pp:1-8.
  • Görres, J H., Martin, C., Nouri-Aiin, M., Bellitürk, K. (2019). Physical properties of soils altered by invasive pheretimoid earthworms: does their casting layer create thermal refuges? Soil Systems 3 (3): 1-13).
  • Grogan, P. (1998). CO2 Flux Measurement Using Soda Lime: Correction for Water Formed During CO2 Adsorption. Ecology 79: 1467-1468.
  • Gülle Sakin, E D., Saylan, L., Sakin, E., Altun, Ş B., Yeşilköy, S. (2015). Carbon Emission from Soil and Meteorological Variables: A Case Study in Sanliurfa. 4th International Soil and Water Resources Congress. 01-04 September, Maras /Turkey.
  • Herbst, M., Hellebrand, H J. (2008). Multiyear Heterotrophic Soil Respiration: Evaluation of Acoupled CO2 Transport and Carbon Turnover Model. Ecol Model 214 (2–4):271–283.
  • Horneck, D A., Hart, J M., Topper, K., Koepsell, B. (1989). Methods of Soil Analysis Used in the Soil Testing Laboratory at Oregon State University. 1-21, State of Oregon, University Publication USA.
  • Jae, J., Tompsett, G A., Foster, A J., Hammond, K D., Auerbach, S M., Lobo, R F., Huber, G W. (2011). Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis 279(2): 257-268.
  • Karaağaç, H A., Baran, M F., Mart, D., Bolat, A., Eren, Ö. (2019). Nohut üretiminde enerji kullanım etkinliği ve sera gazı (ghg) emisyonunun belirlenmesi (Adana ili örneği). Avrupa Bilim ve Teknoloji Dergisi (16): 41-50.
  • Keith, H., Wong, S C. (2006). Measurement of soil CO2 efflux using soda lime absorption: Both quantitative and reliable. Soil Biology & Biochemistry 38:1121–1131.
  • Lal, R., Kimble, J M. (1997). Conservation tillage for carbon sequestration. Nutrient Cycling in Agroecosystems 49 (1-3): 243-253.
  • Liu, W., Zhang, Z., Wan, S. (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195.
  • Lou, Y., Li, Z., Zhang, T., Liang, Y. (2004). CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry 36(11): 1835-1842.
  • Luo, Y., Zhou, X. (2006). Soil Respiration and the Environment. Academic Press, San Diego, CA.
  • Maier, M., Schack-Kirchner, H., Hildebrand, E E., Holst, J. (2010). Pore-Space CO2 dynamics in a deep, well-aerated doil. Eur J Soil Sci 61: 877–88.
  • Nelson, D W., Sommers, L E. (1982). Total Carbon, Organic Carbon and Organic Matter. Madison, Wisconsin, pp 539 – 579, USA.
  • Nowak, D J., Crane, D E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental pollution 116 (3): 381-389.
  • Raich, J W., Schlesinger, W H. (1992). The Global Carbondioxide Flux in Soil Respiration and its Relationship to Vegetation and Climate. Tellus 44B: 81–99.
  • Rey, A., Pegoraro, E., Oyonatre, C., Were, A., Escribano, P., Raimundo, J. (2011). Impact of land degradation on soil respiration in a steppe (Stipa tenacissima L.) semiarid ecosystem in the SE of Spain. Soil Biology and Biochemistry 43:393-403.
  • Sakin, E., Sakin, E D. (2015). Harran Ovasının killi topraklarında karbon emisyonun ölçülmesi. GAP VII. Tarım Kongresi. 28 Nisan – 1 Mayıs 2015, Şanlıurfa.
  • Sakin, E., Yanardag, I H. (2019). Effect of application of sheep manure and its biochar on carbon emissions in salt affected calcareous soil in Sanliurfa Region SE Turkey. Fresen Environ Bull 28 (4): 2553-2560.
  • Sakin, E. (2016). Seasonal variations of carbon emissions in uncultivated soils. Oxidation Communication 39 (2): 1374-1384.
  • Schimel, D., Melillo, J., Tian, H., McGuire, A D., Kicklighter, D., Kittel, T., Parton, W. (2000). Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States. Science 287: 2004-2006.
  • Sugihara, S., Funakawa, S., Kilasara, M., Kosaki, T. (2012). Effects of land management on CO2 flux and soil C stock in two Tanzanian croplands with contrasting soil texture. Soil Biology & Biochemistry 46: 1-9.
  • Uzel, N K., Çimrin, K M. (2020). Gaziantep ili Nizip ilçesi zeytin bahçelerinin yaprak ve toprak örnekleri ile beslenme durumunun belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23(4), 1039-1053.
  • Vanhala, P., Fritze, H., Neuvonen, S. (1996). Prolonged simulated acid rain treatment in the subarctic: effect on the soil respiration rate and microbial biomass. Biology and Fertility of Soils 23 (1): 7-14.
  • Wu, H J., Lee, X H. (2011). Short-term effects of rain on soil respiration in two new England forests. Plant and Soil 338: 329–342.
  • Xu, X., Luo, X. (2012). Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 170: 118–126.
  • Yaldız, G., Şekeroğlu, N. (2013). Küresel iklim değişikliğinde tıbbi ve aromatik bitkilerin önemi. Türk Bilimsel Derlemeler Dergisi 6(1): 85-88.
  • Zimmermann, M., Conen, J L F., Bird, M I., Meir, P. (2012). Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity? Biogeochemistry 107:423–436.
There are 52 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Erdal Sakin 0000-0001-5403-4247

Korkmaz Bellitürk 0000-0003-4944-3497

Ahmet Çelik 0000-0001-8958-4978

Publication Date September 7, 2021
Submission Date December 17, 2020
Acceptance Date February 22, 2021
Published in Issue Year 2021 Volume: 18 Issue: 3

Cite

APA Sakin, E., Bellitürk, K., & Çelik, A. (2021). Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18(3), 482-493. https://doi.org/10.33462/jotaf.842302
AMA Sakin E, Bellitürk K, Çelik A. Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi. JOTAF. September 2021;18(3):482-493. doi:10.33462/jotaf.842302
Chicago Sakin, Erdal, Korkmaz Bellitürk, and Ahmet Çelik. “Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi”. Tekirdağ Ziraat Fakültesi Dergisi 18, no. 3 (September 2021): 482-93. https://doi.org/10.33462/jotaf.842302.
EndNote Sakin E, Bellitürk K, Çelik A (September 1, 2021) Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi. Tekirdağ Ziraat Fakültesi Dergisi 18 3 482–493.
IEEE E. Sakin, K. Bellitürk, and A. Çelik, “Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi”, JOTAF, vol. 18, no. 3, pp. 482–493, 2021, doi: 10.33462/jotaf.842302.
ISNAD Sakin, Erdal et al. “Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi”. Tekirdağ Ziraat Fakültesi Dergisi 18/3 (September 2021), 482-493. https://doi.org/10.33462/jotaf.842302.
JAMA Sakin E, Bellitürk K, Çelik A. Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi. JOTAF. 2021;18:482–493.
MLA Sakin, Erdal et al. “Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 18, no. 3, 2021, pp. 482-93, doi:10.33462/jotaf.842302.
Vancouver Sakin E, Bellitürk K, Çelik A. Yarı Kurak Bölge Koşullarında Zeytin Bitkisinin Yetiştiği Toprakta Karbondioksit Emisyonunun Ölçülmesi. JOTAF. 2021;18(3):482-93.