Research Article
BibTex RIS Cite

Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues

Year 2022, Volume: 19 Issue: 1, 204 - 214, 26.01.2022
https://doi.org/10.33462/jotaf.976990

Abstract

Palm pruning residues are potential pellet raw material, which are quite abundant in regions with hot climates. In pelletizing process, raw material properties and pellet machine features are the main factors affecting the final pellet quality. In this study, 5 mm sieve hole diameter milled palm pruning residues was pelleted using two different pellet dies and two different pelletizing moisture. First die (D1) has 25 mm total length, 17° inlet angle and 10 mm inlet depth. The second die (D2) has 35 mm total length, 33° inlet angle and 5 mm inlet depth. The inlet and outlet hole diameter of both die are 11 mm and 8 mm, respectively. Pelleting moisture is fixed at two different levels as 10% (M10) and 14% (M14). The change of production parameters and pellet physical properties were investigated according to the die type and moisture content parameters. Increasing pelletizing moisture had a positive effect on the production capacity and it was obtained as 82.44, 103.1, 134.05, 145.49 kg h-1 for D1-M10, D1-M14, D2-M10 and D2-M14 pellets, respectively. The increase in pelletizing moisture caused degradation of the pellet forms, which is more evident in the pellets produced in the D1 die. Pellets produced in the D2 die are more compressed and denser and lower moisture content. The increase in total die length resulted in heavier and denser pellet production, resulting in higher production capacity and low specific energy consumption. Pellet durability index (%, ar) of D1-M10, D1-M14, D2-M10 and D2-M14 were measured as 95.53; 92.29 and 97.74; 98.32, respectively. It was concluded that the longer active die length can tolerate high moisture content pelletizing, and durable pellets can be produced in a wide moisture content range. In addition, die conical dimensions and die length are the factors that needs to be optimized according to different raw materials.

References

  • American Society of Agricultural & Biological Engineers. (2012). ASAE S269.5 Densified Products for Bulk Handling Cubes, Pellets, and Crumbles - Definitions and Methods for Determining Density, Durability, and Moisture Content. ASAE Standard. St. Joseph, Michigan, U.S.A.
  • Atay, O. A. (2016). Yağ Gülü Damıtma Atıkları , Kızılçam Kabuğu ve Linyit Kömür Tozundan Elde Edilen Peletlerin Baca Gazı Emisyonlarının Belirlenmesi Measurement of Flue Gas Emission of Pellets Obtained from the Mixture of Rose Oil Processing Wastes , Lignite Coal Dust and P, 13(02), 1–9.
  • Ben Hnich, K., Khila, Z. and Hajjaji, N. (2020). Comprehensive study of three configurations coproducing synthetic fuels and electricity from palm residue via Fischer-Tropsch process. Energy, 205, 118027. doi:10.1016/j.energy.2020.118027
  • Bourmaud, Alain, Hom Dhakal, Anouck Habrant, Justine Padovani, David Siniscalco, Michael H. Ramage, Johnny Beaugrand, and Darshil U. Shah. 2017. “Exploring the Potential of Waste Leaf Sheath Date Palm Fibres for Composite Reinforcement through a Structural and Mechanical Analysis.” Composites Part A: Applied Science and Manufacturing 103:292–303.
  • Calderón, Cristina, Martin Colla, Jean-Marc Jossart, Nathalie Hemeleers, Giulia Cancian, Nino Aveni, and Claudio Caferri. 2019. BioEnergy Europe Statiscital Report. Vol. 1. Place du Champ de Mars 2A 1050 Brussels.
  • Cheng, Jun, Fan Zhou, Tingting Si, Junhu Zhou, and Kefa Cen. 2018. “Mechanical Strength and Combustion Properties of Biomass Pellets Prepared with Coal Tar Residue as a Binder.” Fuel Processing Technology 179(July):229–37.
  • Chicatto, J. A., K. T. Rainert, M. J. Gonçalves, C. V. Helm, D. Altmajer-Vaz, and L. B. B. Tavares. 2018. “Decolorization of Textile Industry Wastewater in Solid State Fermentation with Peach-Palm (Bactris Gasipaes) Residue.” Brazilian Journal of Biology 78(4):718–27.
  • Diken, Bahar and Birol Kayişoǧlu. 2020. “A Research on the Determination of the Gasification Performance of Grass Pellets.” Journal of Tekirdag Agricultural Faculty 17(1):24–36.
  • Döring, Stefan. 2013. “Power from Pellets: Technology and Applications.” Power from Pellets: Technology and Applications 9783642199:1–223.
  • EN 15210-1. 2009. “Solid Biofuels - Determination of Mechanical Durability of Pellets and Briquettes - Part 1: Pellets.”
  • EN 16127. 2012. “Solid Biofuels. Determination of Length and Diameter of Pellets.”
  • EN15103. 2010. “Solid Biofuels- Determination of Bulk Density.”
  • ENplus. 2015. Pellet Quality Requirements. Place du Champ de Mars 2 1050 Brussels, Belgium.
  • Gilbert, P., C. Ryu, V. Sharifi, and J. Swithenbank. 2009. “Effect of Process Parameters on Pelletisation of Herbaceous Crops.” Fuel 88(8):1491–97.
  • Ginting, Arifin, I. Mawardi, A. Jannifar, Sariyusda Semaun Hasyim, and Mawardi Razali Anzieb. 2019. “Effectiveness of Die Hole on Wood Pellet Density Quality Improvement.” IOP Conference Series: Earth and Environmental Science 268(1).
  • Hosseini, Seyed Ehsan and Mazlan Abdul Wahid. 2014. “Utilization of Palm Solid Residue as a Source of Renewable and Sustainable Energy in Malaysia.” Renewable and Sustainable Energy Reviews 40:621–32.
  • Jiang, Longbo, Xingzhong Yuan, Zhihua Xiao, Jie Liang, Hui Li, Liang Cao, Hou Wang, Xiaohong Chen, and Guangming Zeng. 2016. “A Comparative Study of Biomass Pellet and Biomass-Sludge Mixed Pellet: Energy Input and Pellet Properties.” Energy Conversion and Management 126:509–15.
  • Juszczak, Marek and Katarzyna Lossy. 2012. “Pollutant Emission from a Heat Station Supplied with Agriculture Biomass and Wood Pellet Mixture.” Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 33(2):231–42.
  • Kaliyan, Nalladurai and R. Vance Morey. 2010. “Natural Binders and Solid Bridge Type Binding Mechanisms in Briquettes and Pellets Made from Corn Stover and Switchgrass.” Bioresource Technology 101(3):1082–90.
  • Larsson, Sylvia H., Magnus Rudolfsson, Mikael Thyrel, Hkan Örberg, Gunnar Kalén, Mikael Wallin, and Torbjörn A. Lestander. 2012. “Temperature Controlled Feed Layer Formation in Biofuel Pellet Production.” Fuel 94:81–85.
  • Lehtikangas, Päivi. 2001. “Quality Properties of Pelletised Sawdust, Logging Residues and Bark.” Biomass and Bioenergy 20(5):351–60.
  • Liu, Hao, Joel Chaney, Jinxing Li, and Chenggong Sun. 2013. “Control of NOx Emissions of a Domestic/Small-Scale Biomass Pellet Boiler by Air Staging.” Fuel 103:792–98.
  • Liu, Hao, Guoquan Qiu, Yingjuan Shao, and Saffa B. Riffat. 2010. “Experimental Investigation on Flue Gas Emissions of a Domestic Biomass Boiler under Normal and Idle Combustion Conditions.” International Journal of Low-Carbon Technologies 5(2):88–95.
  • Miladinovic, Dejan. 2014. “Optimising Press Settings Contributes to Better Pellet Quality.” (January 2005).
  • Mirmehdi, Seyed Mohammad, Farhad Zeinaly, and Fatemeh Dabbagh. 2014. “Date Palm Wood Flour as Filler of Linear Low-Density Polyethylene.” Composites Part B: Engineering 56:137–41.
  • Monedero, Esperanza, Henar Portero, and Magín Lapuerta. 2015. “Pellet Blends of Poplar and Pine Sawdust: Effects of Material Composition, Additive, Moisture Content and Compression Die on Pellet Quality.” Fuel Processing Technology 132(2015):15–23.
  • Moon, Youn-Ho, Jungwoo Yang, Bon-Cheol Koo, Jong-Woong An, Young-Lok Cha, Young-Mi Youn, Gyeong-Dan Yu, Gi Hong An, Kwang-Geun Park, and In-Hu Choi. 2014. “Analysis of Factors Affecting Miscanthus Pellet Production and Pellet Quality Using Response Surface Methodology.” BioResources 9(2):3334–46.
  • Na, Byeong Ill, Young Hun Kim, Woo Seok Lim, Soo Min Lee, Hyoung Woo Lee, and Jae Won Lee. 2013. “Torrefaction of Oil Palm Mesocarp Fiber and Their Effect on Pelletizing.” Biomass and Bioenergy 52:159–65.
  • Nguyen, Quy Nam, Alain Cloutier, Tatjana Stevanovic, and Alexis Achim. 2017. “Pressurized Hot Water Treatment of Sugar Maple and Yellow Birch Wood Particles for High Quality Fuel Pellet Production.” Biomass and Bioenergy 98:206–13.
  • Nielsen, Niels Peter K., Jens Kai Holm, and Claus Felby. 2009. “Effect of Fiber Orientation on Compression and Frictional Properties of Sawdust Particles in Fuel Pellet Production.” Energy and Fuels 23(6):3211–16.
  • Nielsen, Simon Klinge, Matthias Mandø, and Andreas Brinch Rosenørn. 2020. “Review of Die Design and Process Parameters in the Biomass Pelleting Process.” Powder Technology 364:971–85.
  • Ninduangdee, Pichet and Vladimir I. Kuprianov. 2015. “Combustion of an Oil Palm Residue with Elevated Potassium Content in a Fluidized-Bed Combustor Using Alternative Bed Materials for Preventing Bed Agglomeration.” Bioresource Technology 182:272–81.
  • Nska, Magdalena Doł zy, Sławomir Obidzi Nski, Jolanta Piekut, and Güray Yildiz. 2020. “The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions.” Energies 13(19).
  • Obidzinski, Slawomir, Magdalena Dolzynska, Malgorzata Kowczyk-Sadowy, Krzysztof Jadwisienczak, and Pawel Sobczak. 2019. “Densification and Fuel Properties of Onion Husks.” Energies 12(24).
  • Pradhan, Priyabrata, Sanjay M. Mahajani, and Amit Arora. 2018. “Production and Utilization of Fuel Pellets from Biomass: A Review.” Fuel Processing Technology 181(October):215–32.
  • Si, Yaohui, Junhao Hu, Xianhua Wang, Haiping Yang, Yingquan Chen, Jingai Shao, and Hanping Chen. 2016. “Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets.” Energy and Fuels 30(7):5799–5808.
  • Stelte, Wolfgang, Anand R. Sanadi, Lei Shang, Jens K. Holm, Jesper Ahrenfeldt, and Ulrik B. Henriksen. 2012. “Recent Developments in Biomass Pelletization - a Review.” BioResources 7(3):4451–90.
  • Sun, Lei, Shungang Wan, and Wensui Luo. 2013. “Biochars Prepared from Anaerobic Digestion Residue, Palm Bark, and Eucalyptus for Adsorption of Cationic Methylene Blue Dye: Characterization, Equilibrium, and Kinetic Studies.” Bioresource Technology 140:406–13.
  • Suoware, T. O., S. O. Edelugo, B. N. Ugwu, E. Amula, and I. E. Digitemie. 2019. “Development of Flame Retarded Composite Fibreboard for Building Applications Using Oil Palm Residue.” Materiales de Construccion 69(335):1–8.
  • Theerarattananoon, K., F. Xu, J. Wilson, R. Ballard, L. Mckinney, S. Staggenborg, P. Vadlani, Z. J. Pei, and D. Wang. 2011. “Physical Properties of Pellets Made from Sorghum Stalk, Corn Stover, Wheat Straw, and Big Bluestem.” Industrial Crops and Products 33(2):325–32.
  • Thushari, Indika and Sandhya Babel. 2018. “Sustainable Utilization of Waste Palm Oil and Sulfonated Carbon Catalyst Derived from Coconut Meal Residue for Biodiesel Production.” Bioresource Technology 248:199–203.
  • Trezek, George J. 1981. “National Technical Information Service.” Hydrocarbon Processing 78(9):21.
  • Tumuluru, Jaya Shankar, Christopher T. Wright, Richard Hess, and Kevin L. Kenney. 2011. “A Review of Biomass Densifi Cation Systems to Develop Uniform Feedstock Commodities for Bioenergy Application.” Biofuels, Bioproducts and Biorefining 6(3):246–56.
  • Ungureanu, N., G. Paraschiv, M. Ionescu, and I. Grigore. 2016. “Production Status of Biomass Pellets – Review.” Durable Agriculture – Agriculture of the Future XLVI(February 2017):574–81.
  • Ungureanu, Nicoleta, Valentin Vladut, Gheorghe Voicu, Mirela Nicoleta Dinca, and Bianca Stefania Zabava. 2018. “Influence of Biomass Moisture Content on Pellet Properties - Review.” Engineering for Rural Development 17(May):1876–83.
  • van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762. doi:10.1016/j.biombioe.2011.06.023
  • Yilmaz, Hasan, Mehmet Topakcı, Davut Karayel, and Murad Çanakcı. 2020. “Comparison of the Physical Properties of Cotton and Sesame Stalk Pellets Produced at Different Moisture Contents and Combustion of the Finest Pellets.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues

Year 2022, Volume: 19 Issue: 1, 204 - 214, 26.01.2022
https://doi.org/10.33462/jotaf.976990

Abstract

Palmiye budama artıkları pelet yakıtı olarak değerlendirilme potansiyeli bulunan, özellikle sıcak iklimlerde oldukça fazla miktarda ortaya çıkan artıklardır. Peletleme işleminde hammadde özellikleri ve pelet makinesi özellikleri pelet kalitesini belirleyen unsurlardır. Bu çalışmada, 5 mm elek delik çapına sahip çekiçli değirmende öğütülen palmiye budama artıkları iki farklı peletleme nemi ve iki farklı pelet kalıbında peletlenmiştir. İlk kalıp (D1) 25 mm toplam uzunluk, 17° giriş açısı ve 10 mm giriş derinliğine sahiptir. İkinci kalıp (D2) 35 mm toplam uzunluk, 33° giriş açısı ve 5 mm giriş derinliğine sahiptir. Her iki kalıbın giriş çapı 11 mm ve çıkış çapı 8 mm’dir. Peletleme nemleri %10 (M10) ve %14 (M14) olarak belirlenmiştir. Peletleme nemi ve pelet kalıbı değişkenlerine göre üretim parametreleri ve pelet fiziksel özellikleri incelenmiştir. Peletleme neminin artışı üretim kapasitesinde artışa neden olmuş, D1-M10, D1-M14, D2-M10 ve D2-M14 peletleri için sırasıyla 82.44, 103.1, 134.05, 145.49 kg h-1 olarak hesaplanmıştır. Pelet formu peletleme neminin artışıyla bozunmaya uğramıştır, bu durum D1 kalıbında daha belirgindir. D2 kalıbında üretilen peletler daha fazla sıkışmaya maruz kalarak daha yoğun ve düşük nem içerğine sahiptir. Toplam kalıp uzunluğunun artışı pelet kütlesinde artışa neden olarak daha yoğun peletler üretilmesini sağlamıştır. Bu nedenle D2 kalıbında üretilen peletlerin yoğunluğu ve üretim kapasitesi artmış, özgül enerji tüketimi azalmıştır. Pelet dayanıklılık dirençleri (%), D1-M10, D1-M14, D2-M10 veD2-M14 peletleri için sırasıyla 95.53; 92.29 ve 97.74; 98.32 olarak hesaplanmıştır. Çalışma sonunda, kalıp aktif uzunluğunun yüksek nem içeriğindeki peletleme işlemini tolere ederek geniş peletleme nemi aralığında dayanıklı peletler üretilebileceği sonucuna varılmıştır. Pelet kalıbı deliklerinin koniklik ölçüleri ve kalıp kalınlığının farklı hammaddelere göre optimize edilmesi gerekmektedir.

References

  • American Society of Agricultural & Biological Engineers. (2012). ASAE S269.5 Densified Products for Bulk Handling Cubes, Pellets, and Crumbles - Definitions and Methods for Determining Density, Durability, and Moisture Content. ASAE Standard. St. Joseph, Michigan, U.S.A.
  • Atay, O. A. (2016). Yağ Gülü Damıtma Atıkları , Kızılçam Kabuğu ve Linyit Kömür Tozundan Elde Edilen Peletlerin Baca Gazı Emisyonlarının Belirlenmesi Measurement of Flue Gas Emission of Pellets Obtained from the Mixture of Rose Oil Processing Wastes , Lignite Coal Dust and P, 13(02), 1–9.
  • Ben Hnich, K., Khila, Z. and Hajjaji, N. (2020). Comprehensive study of three configurations coproducing synthetic fuels and electricity from palm residue via Fischer-Tropsch process. Energy, 205, 118027. doi:10.1016/j.energy.2020.118027
  • Bourmaud, Alain, Hom Dhakal, Anouck Habrant, Justine Padovani, David Siniscalco, Michael H. Ramage, Johnny Beaugrand, and Darshil U. Shah. 2017. “Exploring the Potential of Waste Leaf Sheath Date Palm Fibres for Composite Reinforcement through a Structural and Mechanical Analysis.” Composites Part A: Applied Science and Manufacturing 103:292–303.
  • Calderón, Cristina, Martin Colla, Jean-Marc Jossart, Nathalie Hemeleers, Giulia Cancian, Nino Aveni, and Claudio Caferri. 2019. BioEnergy Europe Statiscital Report. Vol. 1. Place du Champ de Mars 2A 1050 Brussels.
  • Cheng, Jun, Fan Zhou, Tingting Si, Junhu Zhou, and Kefa Cen. 2018. “Mechanical Strength and Combustion Properties of Biomass Pellets Prepared with Coal Tar Residue as a Binder.” Fuel Processing Technology 179(July):229–37.
  • Chicatto, J. A., K. T. Rainert, M. J. Gonçalves, C. V. Helm, D. Altmajer-Vaz, and L. B. B. Tavares. 2018. “Decolorization of Textile Industry Wastewater in Solid State Fermentation with Peach-Palm (Bactris Gasipaes) Residue.” Brazilian Journal of Biology 78(4):718–27.
  • Diken, Bahar and Birol Kayişoǧlu. 2020. “A Research on the Determination of the Gasification Performance of Grass Pellets.” Journal of Tekirdag Agricultural Faculty 17(1):24–36.
  • Döring, Stefan. 2013. “Power from Pellets: Technology and Applications.” Power from Pellets: Technology and Applications 9783642199:1–223.
  • EN 15210-1. 2009. “Solid Biofuels - Determination of Mechanical Durability of Pellets and Briquettes - Part 1: Pellets.”
  • EN 16127. 2012. “Solid Biofuels. Determination of Length and Diameter of Pellets.”
  • EN15103. 2010. “Solid Biofuels- Determination of Bulk Density.”
  • ENplus. 2015. Pellet Quality Requirements. Place du Champ de Mars 2 1050 Brussels, Belgium.
  • Gilbert, P., C. Ryu, V. Sharifi, and J. Swithenbank. 2009. “Effect of Process Parameters on Pelletisation of Herbaceous Crops.” Fuel 88(8):1491–97.
  • Ginting, Arifin, I. Mawardi, A. Jannifar, Sariyusda Semaun Hasyim, and Mawardi Razali Anzieb. 2019. “Effectiveness of Die Hole on Wood Pellet Density Quality Improvement.” IOP Conference Series: Earth and Environmental Science 268(1).
  • Hosseini, Seyed Ehsan and Mazlan Abdul Wahid. 2014. “Utilization of Palm Solid Residue as a Source of Renewable and Sustainable Energy in Malaysia.” Renewable and Sustainable Energy Reviews 40:621–32.
  • Jiang, Longbo, Xingzhong Yuan, Zhihua Xiao, Jie Liang, Hui Li, Liang Cao, Hou Wang, Xiaohong Chen, and Guangming Zeng. 2016. “A Comparative Study of Biomass Pellet and Biomass-Sludge Mixed Pellet: Energy Input and Pellet Properties.” Energy Conversion and Management 126:509–15.
  • Juszczak, Marek and Katarzyna Lossy. 2012. “Pollutant Emission from a Heat Station Supplied with Agriculture Biomass and Wood Pellet Mixture.” Chemical and Process Engineering - Inzynieria Chemiczna i Procesowa 33(2):231–42.
  • Kaliyan, Nalladurai and R. Vance Morey. 2010. “Natural Binders and Solid Bridge Type Binding Mechanisms in Briquettes and Pellets Made from Corn Stover and Switchgrass.” Bioresource Technology 101(3):1082–90.
  • Larsson, Sylvia H., Magnus Rudolfsson, Mikael Thyrel, Hkan Örberg, Gunnar Kalén, Mikael Wallin, and Torbjörn A. Lestander. 2012. “Temperature Controlled Feed Layer Formation in Biofuel Pellet Production.” Fuel 94:81–85.
  • Lehtikangas, Päivi. 2001. “Quality Properties of Pelletised Sawdust, Logging Residues and Bark.” Biomass and Bioenergy 20(5):351–60.
  • Liu, Hao, Joel Chaney, Jinxing Li, and Chenggong Sun. 2013. “Control of NOx Emissions of a Domestic/Small-Scale Biomass Pellet Boiler by Air Staging.” Fuel 103:792–98.
  • Liu, Hao, Guoquan Qiu, Yingjuan Shao, and Saffa B. Riffat. 2010. “Experimental Investigation on Flue Gas Emissions of a Domestic Biomass Boiler under Normal and Idle Combustion Conditions.” International Journal of Low-Carbon Technologies 5(2):88–95.
  • Miladinovic, Dejan. 2014. “Optimising Press Settings Contributes to Better Pellet Quality.” (January 2005).
  • Mirmehdi, Seyed Mohammad, Farhad Zeinaly, and Fatemeh Dabbagh. 2014. “Date Palm Wood Flour as Filler of Linear Low-Density Polyethylene.” Composites Part B: Engineering 56:137–41.
  • Monedero, Esperanza, Henar Portero, and Magín Lapuerta. 2015. “Pellet Blends of Poplar and Pine Sawdust: Effects of Material Composition, Additive, Moisture Content and Compression Die on Pellet Quality.” Fuel Processing Technology 132(2015):15–23.
  • Moon, Youn-Ho, Jungwoo Yang, Bon-Cheol Koo, Jong-Woong An, Young-Lok Cha, Young-Mi Youn, Gyeong-Dan Yu, Gi Hong An, Kwang-Geun Park, and In-Hu Choi. 2014. “Analysis of Factors Affecting Miscanthus Pellet Production and Pellet Quality Using Response Surface Methodology.” BioResources 9(2):3334–46.
  • Na, Byeong Ill, Young Hun Kim, Woo Seok Lim, Soo Min Lee, Hyoung Woo Lee, and Jae Won Lee. 2013. “Torrefaction of Oil Palm Mesocarp Fiber and Their Effect on Pelletizing.” Biomass and Bioenergy 52:159–65.
  • Nguyen, Quy Nam, Alain Cloutier, Tatjana Stevanovic, and Alexis Achim. 2017. “Pressurized Hot Water Treatment of Sugar Maple and Yellow Birch Wood Particles for High Quality Fuel Pellet Production.” Biomass and Bioenergy 98:206–13.
  • Nielsen, Niels Peter K., Jens Kai Holm, and Claus Felby. 2009. “Effect of Fiber Orientation on Compression and Frictional Properties of Sawdust Particles in Fuel Pellet Production.” Energy and Fuels 23(6):3211–16.
  • Nielsen, Simon Klinge, Matthias Mandø, and Andreas Brinch Rosenørn. 2020. “Review of Die Design and Process Parameters in the Biomass Pelleting Process.” Powder Technology 364:971–85.
  • Ninduangdee, Pichet and Vladimir I. Kuprianov. 2015. “Combustion of an Oil Palm Residue with Elevated Potassium Content in a Fluidized-Bed Combustor Using Alternative Bed Materials for Preventing Bed Agglomeration.” Bioresource Technology 182:272–81.
  • Nska, Magdalena Doł zy, Sławomir Obidzi Nski, Jolanta Piekut, and Güray Yildiz. 2020. “The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions.” Energies 13(19).
  • Obidzinski, Slawomir, Magdalena Dolzynska, Malgorzata Kowczyk-Sadowy, Krzysztof Jadwisienczak, and Pawel Sobczak. 2019. “Densification and Fuel Properties of Onion Husks.” Energies 12(24).
  • Pradhan, Priyabrata, Sanjay M. Mahajani, and Amit Arora. 2018. “Production and Utilization of Fuel Pellets from Biomass: A Review.” Fuel Processing Technology 181(October):215–32.
  • Si, Yaohui, Junhao Hu, Xianhua Wang, Haiping Yang, Yingquan Chen, Jingai Shao, and Hanping Chen. 2016. “Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets.” Energy and Fuels 30(7):5799–5808.
  • Stelte, Wolfgang, Anand R. Sanadi, Lei Shang, Jens K. Holm, Jesper Ahrenfeldt, and Ulrik B. Henriksen. 2012. “Recent Developments in Biomass Pelletization - a Review.” BioResources 7(3):4451–90.
  • Sun, Lei, Shungang Wan, and Wensui Luo. 2013. “Biochars Prepared from Anaerobic Digestion Residue, Palm Bark, and Eucalyptus for Adsorption of Cationic Methylene Blue Dye: Characterization, Equilibrium, and Kinetic Studies.” Bioresource Technology 140:406–13.
  • Suoware, T. O., S. O. Edelugo, B. N. Ugwu, E. Amula, and I. E. Digitemie. 2019. “Development of Flame Retarded Composite Fibreboard for Building Applications Using Oil Palm Residue.” Materiales de Construccion 69(335):1–8.
  • Theerarattananoon, K., F. Xu, J. Wilson, R. Ballard, L. Mckinney, S. Staggenborg, P. Vadlani, Z. J. Pei, and D. Wang. 2011. “Physical Properties of Pellets Made from Sorghum Stalk, Corn Stover, Wheat Straw, and Big Bluestem.” Industrial Crops and Products 33(2):325–32.
  • Thushari, Indika and Sandhya Babel. 2018. “Sustainable Utilization of Waste Palm Oil and Sulfonated Carbon Catalyst Derived from Coconut Meal Residue for Biodiesel Production.” Bioresource Technology 248:199–203.
  • Trezek, George J. 1981. “National Technical Information Service.” Hydrocarbon Processing 78(9):21.
  • Tumuluru, Jaya Shankar, Christopher T. Wright, Richard Hess, and Kevin L. Kenney. 2011. “A Review of Biomass Densifi Cation Systems to Develop Uniform Feedstock Commodities for Bioenergy Application.” Biofuels, Bioproducts and Biorefining 6(3):246–56.
  • Ungureanu, N., G. Paraschiv, M. Ionescu, and I. Grigore. 2016. “Production Status of Biomass Pellets – Review.” Durable Agriculture – Agriculture of the Future XLVI(February 2017):574–81.
  • Ungureanu, Nicoleta, Valentin Vladut, Gheorghe Voicu, Mirela Nicoleta Dinca, and Bianca Stefania Zabava. 2018. “Influence of Biomass Moisture Content on Pellet Properties - Review.” Engineering for Rural Development 17(May):1876–83.
  • van der Stelt, M. J. C., Gerhauser, H., Kiel, J. H. A. and Ptasinski, K. J. (2011). Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass and Bioenergy, 35(9), 3748–3762. doi:10.1016/j.biombioe.2011.06.023
  • Yilmaz, Hasan, Mehmet Topakcı, Davut Karayel, and Murad Çanakcı. 2020. “Comparison of the Physical Properties of Cotton and Sesame Stalk Pellets Produced at Different Moisture Contents and Combustion of the Finest Pellets.” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.
There are 47 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hasan Yılmaz 0000-0003-3791-6437

Mehmet Topakcı 0000-0002-5049-9511

Murad Çanakcı 0000-0002-1985-8387

Davut Karayel 0000-0002-6789-2459

Early Pub Date January 26, 2022
Publication Date January 26, 2022
Submission Date July 31, 2021
Acceptance Date October 22, 2021
Published in Issue Year 2022 Volume: 19 Issue: 1

Cite

APA Yılmaz, H., Topakcı, M., Çanakcı, M., Karayel, D. (2022). Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi, 19(1), 204-214. https://doi.org/10.33462/jotaf.976990
AMA Yılmaz H, Topakcı M, Çanakcı M, Karayel D. Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. JOTAF. January 2022;19(1):204-214. doi:10.33462/jotaf.976990
Chicago Yılmaz, Hasan, Mehmet Topakcı, Murad Çanakcı, and Davut Karayel. “Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues”. Tekirdağ Ziraat Fakültesi Dergisi 19, no. 1 (January 2022): 204-14. https://doi.org/10.33462/jotaf.976990.
EndNote Yılmaz H, Topakcı M, Çanakcı M, Karayel D (January 1, 2022) Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. Tekirdağ Ziraat Fakültesi Dergisi 19 1 204–214.
IEEE H. Yılmaz, M. Topakcı, M. Çanakcı, and D. Karayel, “Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues”, JOTAF, vol. 19, no. 1, pp. 204–214, 2022, doi: 10.33462/jotaf.976990.
ISNAD Yılmaz, Hasan et al. “Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues”. Tekirdağ Ziraat Fakültesi Dergisi 19/1 (January 2022), 204-214. https://doi.org/10.33462/jotaf.976990.
JAMA Yılmaz H, Topakcı M, Çanakcı M, Karayel D. Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. JOTAF. 2022;19:204–214.
MLA Yılmaz, Hasan et al. “Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 19, no. 1, 2022, pp. 204-1, doi:10.33462/jotaf.976990.
Vancouver Yılmaz H, Topakcı M, Çanakcı M, Karayel D. Effect of Die Geometry and Moisture Content on Pelletizing of Palm Pruning Residues. JOTAF. 2022;19(1):204-1.