Research Article
BibTex RIS Cite

‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey

Year 2022, Volume: 19 Issue: 3, 571 - 581, 13.09.2022
https://doi.org/10.33462/jotaf.1028263

Abstract

Tobacco (Nicotiana tabacum) is among the agricultural products with the highest added value in Turkey. Although frequently associated with its negative effects on human health, it also provides important contributions to the Turkish economy with the employment it creates in rural areas and continues to be a strategic product. Many postgraduate theses and studies related to the sociological and economic importance of the production of this plant, which is of great importance for our country, have been carried out. However, there are very limited studies on plant diseases in tobacco production areas in Turkey. Phytoplasma is one of the important plant pathogens that cause yield loss in tobacco. Since available data on phytoplasma diseases on tobacco was very scarce worldwide, field surveys to collect samples showing phytoplasma infection-like symptoms such as yellowish color changes, leaf blisters, proliferation, dwarfism, and other physical abnormalities were carried out in Çanakkale and Balıkesir provinces of Turkey from June to August 2021. The presence of phytoplasmas in six samples was confirmed by 16S ribosomal DNA amplification by nested-PCR using universal phytoplasma primer sets, which also suggested the pathogen associated with the symptoms on tobacco. According to phylogenetic study and virtual-RFLP analysis using AluI and MseI endonuclease enzymes, the six Turkish tobacco phytoplasma strains all belong to group 16SrXII and have more than 99% nucleotide sequence identity with some members of ‘Candidatus Phytoplasma solani’ of the taxonomic subgroup ‘stolbur’ (16SrXII-A). Genetic distances analysis indicated that group 16SrI was more closely related to 16SrXII than 16SrVI, in agreement with the groups clustering in the phylogenetic tree. Neutrality tests found that 16SrI and 16SrXII groups are experiencing expanding or bottleneck selections, probably due to new mutations in the 16S rRNA gene fragment. Meanwhile, 16SrVI populations are shown to be undergoing balancing selections, indicating that its isolates have evolved for a long time.

References

  • Akinyemi, I.A., Wang, F., Zhou, B., Qi, S., Wu, Q. (2016). Ecogenomic survey of plant viruses infecting tobacco by next generation sequencing. Virology Journal 13:1-12.
  • Bahar, E., Korkutal, İ., Şahin, N., Sağır, F.S., Kök, D., Ergönül, O., Uysal, T., Orhan Özalp, Z. (2019). Ganos Dağları doğal florasında bulunan kültür asmalarının (Vitis vinifera L.) moleküler ve ampelografik karakterizasyonu (in Turkish). Journal of Tekirdag Agricultural Faculty 16(1): 92-102.
  • Baric, S., Dalla-Via, I. (2004). A new approach to apple proliferation detection: A highly sensitive Real-Time PCR assay. Journal of Microbiology Methods 57:135-145.
  • Bertaccini, A., Duduk, B., Paltrinieri, S., Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5:1763-1788.
  • Bertaccini, A., Lee, I.M. (2018). Phytoplasmas: An Update: Characterisation and Epidemiology of Phytoplasma - Associated Diseases. In: Rao GP, Bertaccini A, Fiore N, Liefting L, editors. Phytoplasmas: Plant Pathogenic Bacteria-I. Singapore: Springer;. p. 1-29
  • Chung, W.C., Chen, L.L,, Lo, W.S., Lin, C.P., Kuo, C.H. (2013). Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8(4):e62770. doi:10.1371/journal.pone.0062770.
  • Çağlar, B.K., Elbeaino, T., Küsek, M., Pehlivan, D., Fidan, H., Portakaldali, M. (2010). Stolbur Phytoplasma infections in potato and tomato plants from different locations in Turkey. Journal of Turkish Phytopathology 39(1-3):1-8.
  • Çulal-Kiliç, H., Çıkrıkçı, M.Ö., Yardımcı, N. (2017). Determination of Tobacco mosaic virus in tobacco fields in Denizli province, Turkey. Scientific Papers. Series A. Agronomy 60:215-219.
  • Davis, R.E., Dally, E.L. (2001). Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Disease 85:790-797.
  • Erdem, N. (2010). Detection of viruses infecting tobacco (Nicotiana tabacum L.) in Samsun province (in Turkish). Master Thesis. Samsun: Ondokuz Mayis University;. 63 pp.
  • Fu, Y.X., Li, W.H. (1993). Statistical tests of neutrality of mutations. Genetics 133(3):693-709.
  • Guldur, M.E., Simsek, E., Caglar, B.K., Dikilitas, M., Gumus, H., Ayvaci, H. (2018). First report of a 'Candidatus Phytoplasma solani'-related strain (16SrXII-A subgroup) associated with pistachio leaf scorch disease in Turkey. New Disease Reports 38:4.
  • Gundersen, D.E., Lee, I.M. (1996). Ultrasensitive detection of phytoplasmas by Nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea 35(3):144-151.
  • Güller, A., Usta, M. (2020). Stolbur and clover proliferation phytoplasma infections in tomato from Bingöl province, Turkey. Türk Tarım ve Doğa Bilimleri Dergisi 7(4): 855–866.
  • Karanfil, A., Sarı, M., Korkmaz, S. (2020). First report of tobacco mild green mosaic virus in Turkey. Journal of Plant Pathology 102:547. doi:10.1007/s42161-019-00436-x.
  • Kimura, M. A (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35(6):1547-1549.
  • Lepka, P., Stitt, M., Moll, E., Seemüller, E. (1999). Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55(1):59-68.
  • Lherminier, J., Benhamou, N., Larrue, J., Milat, M.L., Boudon-Padieu, E., Nicole, M., et al. (2003). Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93(10):1308-1319.
  • Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., Kinard G. (2008). A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods 154(1-2):48-55.
  • Marcone, C. (2014). Molecular biology and pathogenicity of phytoplasmas. Annual Applied Biology 165(2):199-221.
  • Mitrović, J., Duduk, B. (2011). Occurrence of a new stolbur strain in tobacco in Serbia. Bulletin of Insectology 64(Supplement):107-108.
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34:3299-3302.
  • Sertkaya, G. Hatay ili havuç alanlarında fitoplazmaların araştırılması (in Turkish). The 5th Turkish Plant Protection Congress. Antalya, Turkey; 3-5 February 2014.
  • Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Berenji, J., et al. (2011). Status of tobacco viruses in Serbia and molecular characterization of Tomato spotted wilt virus isolates. Acta Virology 55:337-347.
  • Şimşek, E. Güldür, M.E. (2021).Detection and molecular characterization of phytoplasmas based on 16s rDNA gene region by phylogenetic and in silico RFLP analysis of local grapevine cultivars in Şanlıurfa and Adıyaman. Harran Tarım ve Gıda Bilimleri Dergisi 25(2):204-213.
  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585-595.
  • Temel, U., Öztekin, Y.B. (2020). Tokat ilinde kullanılan bitki koruma makinelerinin ürün güvenliği açısından değerlendirilmesi (in Turkish). Journal of Tekirdag Agricultural Faculty 17(3): 276-284. doi: 10.33462/jotaf.639208
  • TSI (Turkish Statistical Institute) (2021). Crop Production Statistics. https://biruni.tuik.gov.tr/medas/?kn=92&locale=en. (accessed date: 19.11.2021).
  • Usta, M., Güller, A., Günay, A. (2020). The molecular characterization of the coat protein sequence and differentiation of CMV-subgroup I on tobacco from native flora in Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2), 523-534.
  • Usta, M., Güller, A., Sipahioğlu, H.M. (2018). Molecular analysis of 'Candidatus Phytoplasma trifolii' and 'Candidatus Phytoplasma solani' associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology 20(9):1991-1996.
  • Weintraub, P.G., Wilson, M.R. (2009). Control of phytoplasma diseases and vectors. In: Weintraub PG, Wilson MR, editors. Phytoplasmas: genomes, plant hosts and vectors. Wallingford, United Kingdom: CAB International; p. 233-249.
  • Wolf, F.A. (1949). Turkish or Oriental Tobacco. Economic Botany.;3(1):32-41. https://www.jstor.org/stable/4251921.
  • Yilmaz, S., Caglar, B.K., Djelouah, K. (2019). Molecular characterization of phytoplasma diseases of pepper in Turkey. Journal of Phytopathology 167(9):479-483.
  • Yürekli, A., Önder, Z., Elibol, M., Erk, N., Cabuk, A., Fisunoglu, M., et al. (2010). The Economics of Tobacco and Tobacco Taxation In Turkey. International Union Against Tuberculosis and Lung Disease. https://www.tobaccofreekids.org/assets/global/pdfs/en/Turkey_tobacco_taxes_report_en.pdf. (accessed date: 22.11.2021).
  • Zhao, Y., Davis, R.E., Wei, W., Shao, J., Jomantiene, R. (2014). Phytoplasma genomes: evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In: Gross D, Berlin C, editors. Genomics of Plant-Associated Bacteria. Heidelberg: Springer-Verlag; p. 235-271.
  • Zhao, Y., Wei, W., Lee, I.M., Shao, J., Suo, X., Davis, R.E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59(10):2582-2593.
  • Zhao, Y., Wei, W., Lee, I.M., Shao, J., Suo, X., Davis, R.E. (2013). The iPhyClassifier, an Interactive Online Tool for Phytoplasma Classification and Taxonomic Assignment. In: Dickinson M, Hodgetts J, editors. Methods in Molecular Biology: Phytoplasma. Totowa, NJ: Humana Press; p. 329-338.

‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey

Year 2022, Volume: 19 Issue: 3, 571 - 581, 13.09.2022
https://doi.org/10.33462/jotaf.1028263

Abstract

Tütün (Nicotiana tabacum) Türkiye’de katma değeri en yüksek tarımsal ürünler arasında yer almaktadır. İnsan sağlığına olan olumsuz etkileri ile sıklıkla gündeme gelmesinin yanı sıra, kırsal alanlarda oluşturduğu iş gücü ile de Türk ekonomisine önemli katkılar sunmakta ve stratejik bir ürün olma özelliğini devam ettirmektedir. Ülkemiz için büyük öneme sahip bu bitkinin üretiminin sosyolojik ve ekonomik önemi ile gerçekleştirilmiş çok sayıda lisansüstü tez ve çalışma mevcuttur. Ancak, Türkiye tütün üretim alanlarında bitki hastalıkları ile ilgili olarak gerçekleştirilmiş son derece sınırlı sayıda çalışma vardır. Tütünlerde verim kaybına neden olan önemli bitki patojenlerinden bir tanesi de fitoplazmadır. Tütün fitoplazma hastalıklarına ilişkin mevcut veriler dünya çapında çok az olduğundan dolayı, Çanakkale ve Balıkesir illerinde tütün ekim alanlarında sarımsı renk değişiklikleri, yaprak kabarcıkları, proliferasyon, cücelik ve diğer fiziksel anormallikler gibi fitoplazmaların neden olduğu semptomlar gösteren örneklerin toplanması için Haziran-Ağustos 2021 tarihleri arasında Türkiye'nin Çanakkale ve Balıkesir illerinde saha araştırmaları yapılmıştır. Altı örnekte fitoplazmaların varlığı, tütün semptomlarıyla ilişkili patojeni de öneren evrensel fitoplazma primer setleri kullanılarak nested-PCR ile 16S ribozomal DNA amplifikasyonu ile doğrulanmıştır. Filogenetik analizler ve AluI ve MseI endonükleaz enzimlerini kullanılarak uygulanan sanal-RFLP analizleri bu izolatların 16SrXII ‘‘Candidatus Phytoplasma solani’’(Stolbur) grubu ve 16SrXII-A altgrubu strainleri ile %99'dan fazla nükleotid dizi özdeşliğine sahip olduğunu göstermiştir. Genetik mesafe analizi, filogenetik ağaçta kümelenen gruplarla uyumlu olarak, grup 16SrI'nin 16SrXII ile 16SrVI'dan daha yakından ilişkili olduğunu göstermiştir. Tarafsızlık testleri ile, 16SrI ve 16SrXII gruplarının, muhtemelen 16S rRNA gen fragmentinde yeni mutasyonlar nedeniyle genişleyen veya darboğaz seçimlerinden geçtiğini göstermiştir. Ayrıca, 16SrVI popülasyonlarının uzun bir süredir evrimleştiğini gösteren dengeleme seçimlerinden geçtiği gösterilmiştir.

References

  • Akinyemi, I.A., Wang, F., Zhou, B., Qi, S., Wu, Q. (2016). Ecogenomic survey of plant viruses infecting tobacco by next generation sequencing. Virology Journal 13:1-12.
  • Bahar, E., Korkutal, İ., Şahin, N., Sağır, F.S., Kök, D., Ergönül, O., Uysal, T., Orhan Özalp, Z. (2019). Ganos Dağları doğal florasında bulunan kültür asmalarının (Vitis vinifera L.) moleküler ve ampelografik karakterizasyonu (in Turkish). Journal of Tekirdag Agricultural Faculty 16(1): 92-102.
  • Baric, S., Dalla-Via, I. (2004). A new approach to apple proliferation detection: A highly sensitive Real-Time PCR assay. Journal of Microbiology Methods 57:135-145.
  • Bertaccini, A., Duduk, B., Paltrinieri, S., Contaldo, N. (2014). Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5:1763-1788.
  • Bertaccini, A., Lee, I.M. (2018). Phytoplasmas: An Update: Characterisation and Epidemiology of Phytoplasma - Associated Diseases. In: Rao GP, Bertaccini A, Fiore N, Liefting L, editors. Phytoplasmas: Plant Pathogenic Bacteria-I. Singapore: Springer;. p. 1-29
  • Chung, W.C., Chen, L.L,, Lo, W.S., Lin, C.P., Kuo, C.H. (2013). Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8(4):e62770. doi:10.1371/journal.pone.0062770.
  • Çağlar, B.K., Elbeaino, T., Küsek, M., Pehlivan, D., Fidan, H., Portakaldali, M. (2010). Stolbur Phytoplasma infections in potato and tomato plants from different locations in Turkey. Journal of Turkish Phytopathology 39(1-3):1-8.
  • Çulal-Kiliç, H., Çıkrıkçı, M.Ö., Yardımcı, N. (2017). Determination of Tobacco mosaic virus in tobacco fields in Denizli province, Turkey. Scientific Papers. Series A. Agronomy 60:215-219.
  • Davis, R.E., Dally, E.L. (2001). Revised subgroup classification of group 16SrV phytoplasmas and placement of flavescence dorée-associated phytoplasmas in two distinct subgroups. Plant Disease 85:790-797.
  • Erdem, N. (2010). Detection of viruses infecting tobacco (Nicotiana tabacum L.) in Samsun province (in Turkish). Master Thesis. Samsun: Ondokuz Mayis University;. 63 pp.
  • Fu, Y.X., Li, W.H. (1993). Statistical tests of neutrality of mutations. Genetics 133(3):693-709.
  • Guldur, M.E., Simsek, E., Caglar, B.K., Dikilitas, M., Gumus, H., Ayvaci, H. (2018). First report of a 'Candidatus Phytoplasma solani'-related strain (16SrXII-A subgroup) associated with pistachio leaf scorch disease in Turkey. New Disease Reports 38:4.
  • Gundersen, D.E., Lee, I.M. (1996). Ultrasensitive detection of phytoplasmas by Nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea 35(3):144-151.
  • Güller, A., Usta, M. (2020). Stolbur and clover proliferation phytoplasma infections in tomato from Bingöl province, Turkey. Türk Tarım ve Doğa Bilimleri Dergisi 7(4): 855–866.
  • Karanfil, A., Sarı, M., Korkmaz, S. (2020). First report of tobacco mild green mosaic virus in Turkey. Journal of Plant Pathology 102:547. doi:10.1007/s42161-019-00436-x.
  • Kimura, M. A (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35(6):1547-1549.
  • Lepka, P., Stitt, M., Moll, E., Seemüller, E. (1999). Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55(1):59-68.
  • Lherminier, J., Benhamou, N., Larrue, J., Milat, M.L., Boudon-Padieu, E., Nicole, M., et al. (2003). Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93(10):1308-1319.
  • Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., Kinard G. (2008). A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. Journal of Virological Methods 154(1-2):48-55.
  • Marcone, C. (2014). Molecular biology and pathogenicity of phytoplasmas. Annual Applied Biology 165(2):199-221.
  • Mitrović, J., Duduk, B. (2011). Occurrence of a new stolbur strain in tobacco in Serbia. Bulletin of Insectology 64(Supplement):107-108.
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34:3299-3302.
  • Sertkaya, G. Hatay ili havuç alanlarında fitoplazmaların araştırılması (in Turkish). The 5th Turkish Plant Protection Congress. Antalya, Turkey; 3-5 February 2014.
  • Stanković, I., Bulajić, A., Vučurović, A., Ristić, D., Milojević, K., Berenji, J., et al. (2011). Status of tobacco viruses in Serbia and molecular characterization of Tomato spotted wilt virus isolates. Acta Virology 55:337-347.
  • Şimşek, E. Güldür, M.E. (2021).Detection and molecular characterization of phytoplasmas based on 16s rDNA gene region by phylogenetic and in silico RFLP analysis of local grapevine cultivars in Şanlıurfa and Adıyaman. Harran Tarım ve Gıda Bilimleri Dergisi 25(2):204-213.
  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585-595.
  • Temel, U., Öztekin, Y.B. (2020). Tokat ilinde kullanılan bitki koruma makinelerinin ürün güvenliği açısından değerlendirilmesi (in Turkish). Journal of Tekirdag Agricultural Faculty 17(3): 276-284. doi: 10.33462/jotaf.639208
  • TSI (Turkish Statistical Institute) (2021). Crop Production Statistics. https://biruni.tuik.gov.tr/medas/?kn=92&locale=en. (accessed date: 19.11.2021).
  • Usta, M., Güller, A., Günay, A. (2020). The molecular characterization of the coat protein sequence and differentiation of CMV-subgroup I on tobacco from native flora in Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(2), 523-534.
  • Usta, M., Güller, A., Sipahioğlu, H.M. (2018). Molecular analysis of 'Candidatus Phytoplasma trifolii' and 'Candidatus Phytoplasma solani' associated with phytoplasma diseases of tomato (PDT) in Turkey. International Journal of Agriculture and Biology 20(9):1991-1996.
  • Weintraub, P.G., Wilson, M.R. (2009). Control of phytoplasma diseases and vectors. In: Weintraub PG, Wilson MR, editors. Phytoplasmas: genomes, plant hosts and vectors. Wallingford, United Kingdom: CAB International; p. 233-249.
  • Wolf, F.A. (1949). Turkish or Oriental Tobacco. Economic Botany.;3(1):32-41. https://www.jstor.org/stable/4251921.
  • Yilmaz, S., Caglar, B.K., Djelouah, K. (2019). Molecular characterization of phytoplasma diseases of pepper in Turkey. Journal of Phytopathology 167(9):479-483.
  • Yürekli, A., Önder, Z., Elibol, M., Erk, N., Cabuk, A., Fisunoglu, M., et al. (2010). The Economics of Tobacco and Tobacco Taxation In Turkey. International Union Against Tuberculosis and Lung Disease. https://www.tobaccofreekids.org/assets/global/pdfs/en/Turkey_tobacco_taxes_report_en.pdf. (accessed date: 22.11.2021).
  • Zhao, Y., Davis, R.E., Wei, W., Shao, J., Jomantiene, R. (2014). Phytoplasma genomes: evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. In: Gross D, Berlin C, editors. Genomics of Plant-Associated Bacteria. Heidelberg: Springer-Verlag; p. 235-271.
  • Zhao, Y., Wei, W., Lee, I.M., Shao, J., Suo, X., Davis, R.E. (2009). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). International Journal of Systematic and Evolutionary Microbiology 59(10):2582-2593.
  • Zhao, Y., Wei, W., Lee, I.M., Shao, J., Suo, X., Davis, R.E. (2013). The iPhyClassifier, an Interactive Online Tool for Phytoplasma Classification and Taxonomic Assignment. In: Dickinson M, Hodgetts J, editors. Methods in Molecular Biology: Phytoplasma. Totowa, NJ: Humana Press; p. 329-338.
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Filiz Randa Zelyüt 0000-0002-1366-4389

Adyatma Irawan Santosa 0000-0002-2826-5444

Ali Karanfil 0000-0002-4503-6344

Early Pub Date September 13, 2022
Publication Date September 13, 2022
Submission Date November 25, 2021
Acceptance Date April 27, 2022
Published in Issue Year 2022 Volume: 19 Issue: 3

Cite

APA Randa Zelyüt, F., Santosa, A. I., & Karanfil, A. (2022). ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. Tekirdağ Ziraat Fakültesi Dergisi, 19(3), 571-581. https://doi.org/10.33462/jotaf.1028263
AMA Randa Zelyüt F, Santosa AI, Karanfil A. ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. JOTAF. September 2022;19(3):571-581. doi:10.33462/jotaf.1028263
Chicago Randa Zelyüt, Filiz, Adyatma Irawan Santosa, and Ali Karanfil. “‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated With Nicotiana Tabacum Leaf Abnormality in Turkey”. Tekirdağ Ziraat Fakültesi Dergisi 19, no. 3 (September 2022): 571-81. https://doi.org/10.33462/jotaf.1028263.
EndNote Randa Zelyüt F, Santosa AI, Karanfil A (September 1, 2022) ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. Tekirdağ Ziraat Fakültesi Dergisi 19 3 571–581.
IEEE F. Randa Zelyüt, A. I. Santosa, and A. Karanfil, “‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey”, JOTAF, vol. 19, no. 3, pp. 571–581, 2022, doi: 10.33462/jotaf.1028263.
ISNAD Randa Zelyüt, Filiz et al. “‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated With Nicotiana Tabacum Leaf Abnormality in Turkey”. Tekirdağ Ziraat Fakültesi Dergisi 19/3 (September 2022), 571-581. https://doi.org/10.33462/jotaf.1028263.
JAMA Randa Zelyüt F, Santosa AI, Karanfil A. ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. JOTAF. 2022;19:571–581.
MLA Randa Zelyüt, Filiz et al. “‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated With Nicotiana Tabacum Leaf Abnormality in Turkey”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 19, no. 3, 2022, pp. 571-8, doi:10.33462/jotaf.1028263.
Vancouver Randa Zelyüt F, Santosa AI, Karanfil A. ‘Candidatus Phytoplasma solani’ (Subgroup 16SrXII-A) Associated with Nicotiana tabacum Leaf Abnormality in Turkey. JOTAF. 2022;19(3):571-8.