Research Article
BibTex RIS Cite

Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi

Year 2024, Volume: 21 Issue: 2, 416 - 428, 13.03.2024
https://doi.org/10.33462/jotaf.1279053

Abstract

Mevcut çalışmada, örtü altı domates yetiştiriciliğinde bitki gelişimini teşvik eden kök bakterileri ve kimyasal gübre uygulamalarının domatesin bazı verim ve kalite özelliklerine etkisi araştırılmıştır. Çalışmada yer alan bakteriler bakteri I (Stenotrophomonas maltophilia strain BY-44, Bacillus licheniformis strain HK-13 ve Pseudomonas putida strain NK-12) ve bakteri II (Pseudomonas fluorescens strain FC-42, Bacillus subtilis strain SK-26 ve Rhizobium radiobacter strain SK-63) uygulaması olmak üzere iki farklı grup olarak uygulanmıştır. Kimyasal gübre programına paralel olarak bitkilere azot içerikli (NPK) gübre verildiğinde bakteri uygulamaları için azot fikse edebilme özelliğine sahip NK-12 ve SK-26 strainleri, fosfor içerikli (NPK) ve saf gübreler verildiğinde fosfor çözebilme özellikleri pozitif olan BY-44 ve SK-63 strainleri, potasyum oranı yüksek NPK gübrelerin uygulandığı dönemde ise potasyumu çözebilen HK-13 ve FC-42 strainleri karıştırılmadan tek olarak inokule edilmiştir. Deneme, 2017 yılında Hasyurt’da (Finike-Antalya) bulunan plastik serada, tesadüf parselleri deneme desenine göre kurulmuş ve 3 tekerrürlü olarak yürütülmüştür. Çalışmada yer alan uygulamaların domateste salkım sayısı, birikimli meyve sayısı, meyve boyu, meyve çapı, meyve sertliği, ortalama meyve ağırlığı, erkenci verim, birikimli verim, meyve kuru ağırlığı, toplam suda çözünebilir kuru madde, meyve suyunun pH değeri ve titre edilebilir asit miktarına etkisi değerlendirilmiştir. Yapılan uygulamalar sonucunda bakteri I ve bakteri II uygulamalarının ortalama meyve ağırlığı, meyve çapı, toplam suda çözünebilir kuru madde, meyve suyunun pH değeri, meyve kuru ağırlığı ve meyve sertliği açısından kimyasal gübre uygulaması ile arasında istatistiki olarak önemli bir farklılık olmadığı belirlenmiştir. Bakteri II uygulamasının meyve boyuna etkisinin kimyasal gübre uygulaması ile aynı olduğu, titre edilebilir asit miktarına etkisinin de istatistiki olarak kimyasal gübre uygulamasıyla aynı grupta yer aldığı görülmüştür. Birikimli meyve sayısı, meyve boyu, erkenci verim ve birikimli verim parametrelerinde en yüksek değerlerin kimyasal gübre uygulamasından elde edildiği belirlenmiştir. Ayrıca uygulamalarda kullanılan bakteri stainlerinin IAA, siderofor, ACC-deaminaz ve katalaz gibi bitki gelişimini teşvik mekanizmaları araştırılmıştır. En yüksek IAA Bacillus licheniformis strain HK-13’de (61.24µg ml-1), en yüksek siderofor üretimi Pseudomonas putida strain NK-12’de (36 mm) bulunmuştur. Strainlerin hepsinin ACC- deaminaz ve katalaz enzimine sahip olduğu tespit edilmiştir. Bakteri I ve bakteri II uygulamalarının birçok parametrede kimyasal gübre uygulaması ile aynı veya yakın sonuç vermesi domates yetiştiriciliğinde bakteri uygulamalarına yer verilmesinin kimyasal gübre kullanımının azaltılmasında etkili olacağını göstermiştir.

References

  • Ajilogba, C. F., Babalola, O. O. and Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium Wilt. Studies on Ethno-Medicine, 7(3): 205-216.
  • Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1): 57-61.
  • Anonim (2007). Tarım İl Müdürlüğü, Proje ve İstatistik Şube Müdürlüğü Kayıtları. Antalya.
  • Aseri, G. K., Jain, N. and Tarafdar, J. C. (2009). Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. American-Eurasian Journal of Agriculture and Environment Science, 5(4): 564-570.
  • Asghar, H., Zahir, Z., Arshad, M. and Khaliq, A. (2002). Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35: 231-237.
  • Babalola, O. O., Emmanuel, O. C., Adeleke, B. S., Odelade, K. A., Nwachukwu, B. C., Ayiti, O. E. and Adegboyega, T. T. (2021). Rhizosphere microbiome cooperations: strategies for sustainable crop production. Current Microbiology, 78: 1069-1085.
  • Bashir, Z., Zargar, M. Y., Husain, M., Mohiddin, F. A., Kousar, S., Zahra, S. B. and Rathore, J. P. (2017). Potassium solubilizing microorganisms: mechanism and diversity. International Journal of Pure & Applied Bioscience, 5(5): 653-660.
  • Batu, A. (2004). Determination of acceptable firmness and color values of tomatoes. Journal Food Engineering, 61(3): 471-475.
  • Beneduzi, A., Ambrosini, A. and Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4): 1044-1051.
  • Berger, B., Baldermann, S. and Ruppel, S. (2017). The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. Journal of the Science of Food and Agriculture, 97: 4865-4871.
  • Bonakdarzadeh, M. (2014). Topraksız tarımda farklı domates çeşitlerinin meyve kalite özelliklerinde mevsimsel değişimler. (Yüksek Lisans Tezi) Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Boudyach, E. H., Fatmi, M., Akhayat, O., Benizri, E., Aoumar, A. A. B. (2001). Selection of antagonistic bacteria of Clavibacter michiganensis subsp. michiganensis and evaluation of their efficiency against bacterial canker of tomato. Biocontrol Science and Technology, 11(1): 141-149.
  • Brown, A. (2007). Understanding Food Principles and Preparation. Thomson Higher Education 10 Davis Drive Belmont, CA 9402- 3098, p 672, USA.
  • Compant, S., Duffy, B., Nowak., J., Clement., C., Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71: 4951-4959.
  • Cordero, I., Balaguer, L., Rincón, A. and Pueyo, J. J. (2018). Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 181(5): 694-703.
  • Dixon, R. and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8): 621-631.
  • Gallo, M., Ferrara, L., Calogero, A., Montesano, D. and Naviglio, D. (2020). Relationships between food and diseases: what to know to ensure food safety. Food Research International, 137: 109414.
  • García, J. A. L., Probanza, A., Ramos, B., Palomino, M., Mañero, F. J. G. (2004). Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24(4): 169-176.
  • Karthika, S., Varghese, S. and Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10: 320.
  • Khalid, M., Hassani, D., Bilal, M., Liao, J. and Huang, D. (2017). Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLOS ONE, 12(5): e0177185.
  • Kiracı, S. and Karataş, A. (2015). Organik domates yetiştiriciliğinde bitki aktivatörü uygulamalarının verim ve kalite üzerine etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 12(1): 17-22.
  • Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M. C. and Moore, L. W. (1990). Inoculation of Plant Tissues. Methods in Phytobacteriology. Akademiai Kiado, Budapest, Hungary.
  • Kotan, R. and Tozlu, E. (2021). Bazı pestisitlerin faydalı bakteriler ve patojen bakteriler üzerine bakterisidal etkilerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18(2): 197-212.
  • Lakhdar, A., Iannelli, M. A., Debez, A., Massacci, A., Jedidi, N. and Abdelly, C. (2010). Effect of municipal solid waste compost and sewage sludge use on wheat (Triticum durum): growth, heavy metal accumulation, and antioxidant activity. Journal of the Science of Food and Agriculture, 90(6): 965-971.
  • Louden, B. C., Haarmann, D. and Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology and Biology Education, 12(1): 51-53.
  • Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63: 541-556.
  • Lurthy, T., Cantat, C., Jeudy, C., Declerck, P., Gallardo, K., Barraud, C., Leroy, F., Ourry, A., Lemanceau, P., Salon, C. and Mazurier, S. (2020). Impact of bacterial siderophores on iron status and ionome in pea. Frontiers in Plant Science, 11: 730.
  • Mason-D'croz, D., Bogard, J. R., Sulser, T. B., Cenacchi, N., Dunston, S., Herrero, M. and Wiebe, K. (2019). Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. The Lancet Planetary Health, 3(7): e318-e329.
  • Niranjiyan, R. S., Shetty, H. S. and Reddy, M. S. (2006). Plant Growth Promoting Rhizobacteria: Potential Gren Alternative for Plant Productivity. PGPR: Biocontrol and Biofertlization. Springer, The Netherlands.
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A. and Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209: 21-32.
  • Oral, S. F. and Kotan, R. (2021). Bitki gelişimini teşvik eden bakterilerin domateste bitki gelişim parametreleri, verim ve bitki sağlığı üzerine etkisi. Türkiye Biyolojik Mücadele Dergisi, 12(1): 47-65.
  • Özkaplan, M. and Balkaya, A. (2019). Işık ve sıcaklığın topraksız tarım koşullarında salkım domatesin meyve kalitesine etkisi. Anadolu Tarım Bilimleri Dergisi, 37: 227-238.
  • Öztekin, G. B., Tüzel, Y. and Mehmet, E. (2015). Potasyum çözücü bakteri aşılamasının sera domates yetiştiriciliğinde bitki gelişimi, verim ve meyve kalitesi üzerine etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 3(1): 41-47.
  • Özyılmaz, Ü. (2007). Aydın ilinde çilek kök hastalıklarına karşı antagonist bakterilerle biyolojik savaş. (Doktora Tezi) Adnan Menderes Üniversitesi, Aydın.
  • Penrose, D. M. and Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum, 118(1): 10-15.
  • Porcel, R., Zamarreño, Á. M., García-Mina, J. M. and Aroca, R. (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14(1): 1-12.
  • Rai, A. and Nabti, E. (2017). Plant Growth-Promoting Bacteria: Importance in Vegetable Production. Microbial Strategies for Vegetable Production. Springer Cham, Hungarica.
  • Rezzonico, F., Zala, M., Keel, C., Duffy, B., Moënne‐Loccoz, Y. and Défago, G. (2007). Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4‐diacetylphloroglucinol really synonymous with higher plant protection?. New Phytologist, 173(4): 861-872.
  • Sadou, O., Aycan, M., Taher, M., Kayan, M. and Yıldız, M. (2016). Tuz stresinin ayçiçeğinin (Helianthus annuus L.) fide gelişimi üzerine etkisi. Tarım Bilimleri Araştırma Dergisi, 9(1): 13-17.
  • Saharan, B. S. and Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21(1): 30.
  • Şahin, B. U. and DÖnmez, M. F. (2020). Farklı bakteri uygulamalarının domates (Solanum lycopersicum L.) bitki gelişimi üzerine etkileri. Journal of the Institute of Science and Technology, 10(3): 1507-1517.
  • Samaras, A., Roumeliotis, E., Ntasiou, P. and Karaoglanidis, G. (2021). Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants, 10: 1113.
  • Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. and Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10: 475.
  • Shahid, M., Khan, M. S., Syed, A., Marraiki, N. and Elgorban, A. M. (2021). Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Scientific Reports, 11: 9655.
  • SPSS (2010). SPSS 17.0 for windows evaluation version, SPSS Inc., Illinois, USA.
  • Tan, C. Y., Dodd, I. C., Chen, J. E., Phang, S. M., Chin, C. F., Yow, Y. Y. and Ratnayeke, S. (2021). Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview. Journal of Applied Phycology, 33: 2995-3023.
  • Tireng Karut, Ş., Horuz, S. and Aysan, Y. (2019). Domates bakteriyel kanser ve solgunluk hastalığı etmeni Clavibacter michiganensis subsp. michiganensis’ in tohumda aranması ve tohum uygulamalarının patojen gelişimine etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 16(3): 284-296.
  • Toprak, E. and Gül A. (2013). Topraksız tarımda kullanılan ortam domates verimi ve kalitesini etkiliyor mu? Tarım Bilimleri Araştırma Dergisi, 6(2): 41-47.
  • TÜİK (2022). Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 02.04.2023).
  • Tüzel, Y., Duyar, H., Öztekin, G. B. and Gül, A. (2009). Domates anaçlarının farklı dikim tarihlerinde bitki gelişimi, sıcaklık toplamı isteği, verim ve kaliteye etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 46(2): 79-92.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., Rao, V. R., Kalam, S. and Podile, A. R. (2014). Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54: 403-412.
  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119: 243-254.
  • Venkadesaperumal, G., Amaresan, N. and Kumar, K. (2014). Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands. Brazilian Journal of Microbiology, 45(4): 1271-1281.
  • Verla, A. W., Enyoh, C. E., Verla, E. N. and Nwarnorh, K. O. (2019). Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences, 1: 1400.
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of experimental Botany, 52(suppl_1): 487-511.
  • Yilihamu, A., Ouyang, B., Ouyang, P., Bai, Y., Zhang, Q., Shi, M., Guan, X. and Yang, S. T. (2020). Interaction between graphene oxide and nitrogen-fixing bacterium Azotobacter chroococcum: transformation, toxicity and nitrogen fixation. Carbon, 160: 5-13.

The Effect of Plant Growth Promoting Rhizobacteria and Chemical Fertilizers on Tomato Cultivation

Year 2024, Volume: 21 Issue: 2, 416 - 428, 13.03.2024
https://doi.org/10.33462/jotaf.1279053

Abstract

In the current study, the effects of root bacteria and chemical fertilizer applications that promote plant growth in greenhouse tomato cultivation on some yield and quality characteristics of tomato were investigated. Bacteria in the study were applied as two different groups, bacteria I (Stenotrophomonas maltophilia strain BY-44, Bacillus licheniformis strain HK-13 and Pseudomonas putida strain NK-12) and bacteria II (Pseudomonas fluorescens strain FC-42, Bacillus subtilis strain SK-26 and Rhizobium radiobacter strain SK-63). Parallel to the chemical fertilizer program, NK-12 and SK-26 strains, which have the ability to fix nitrogen when nitrogen-containing (NPK) fertilizers were applied to the plants, and BY-44 and SK-26 strains, which have positive phosphorus dissolving properties when phosphorus-containing (NPK) and pure fertilizers were applied, HK-13 and FC-42 strains, which can dissolve potassium when NPK fertilizers with high potassium content were applied were inoculated individually, without mixing. The experiment was established in a plastic greenhouse located in Hasyurt (Finike-Antalya) in 2017, according to the randomized plots trial design and was conducted out with 3 replications. In the study the number of tomato cluster, cumulative fruits, fruit size, fruit diameter, fruit hardness, average fruit weight, early yield, cumulative yield, fruit dry weight, total water-soluble dry matter, pH value of fruit juice and titrable acid amount were evaluated. As a result of the applications, it was determined that there was no statistically significant difference between the applications of bacteria I and bacteria II with chemical fertilizer application in terms of average fruit weight, fruit diameter, total water-soluble dry matter, pH value of fruit juice, fruit dry weight and fruit hardness. It was found that the effect of bacteria II application on fruit length was the same as chemical fertilizer application. In addition, it was observed that the effect of bacteria II application on the amount of titratable acid was statistically in the same group as chemical fertilizer application. It was determined that the highest values in cumulative fruit number, fruit size, early yield and cumulative yield parameters were obtained from chemical fertilizer application. In addition, plant growth promoting mechanisms (IAA, siderophore, ACC-deaminase and catalase) of bacterial stains used in applications were investigated. The highest IAA was found in Bacillus licheniformis strain HK-13 (61.24µg ml-1), the highest siderophore production was found in Pseudomonas putida strain NK-12 (36 mm). It has been determined that all of the strains have ACC-deaminase and catalase enzymes. The results showed that including bacterial applications in tomato cultivation would be effective in reducing the use of chemical fertilizers.

References

  • Ajilogba, C. F., Babalola, O. O. and Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium Wilt. Studies on Ethno-Medicine, 7(3): 205-216.
  • Almaghrabi, O. A., Massoud, S. I. and Abdelmoneim, T. S. (2013). Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi journal of biological sciences, 20(1): 57-61.
  • Anonim (2007). Tarım İl Müdürlüğü, Proje ve İstatistik Şube Müdürlüğü Kayıtları. Antalya.
  • Aseri, G. K., Jain, N. and Tarafdar, J. C. (2009). Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. American-Eurasian Journal of Agriculture and Environment Science, 5(4): 564-570.
  • Asghar, H., Zahir, Z., Arshad, M. and Khaliq, A. (2002). Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, 35: 231-237.
  • Babalola, O. O., Emmanuel, O. C., Adeleke, B. S., Odelade, K. A., Nwachukwu, B. C., Ayiti, O. E. and Adegboyega, T. T. (2021). Rhizosphere microbiome cooperations: strategies for sustainable crop production. Current Microbiology, 78: 1069-1085.
  • Bashir, Z., Zargar, M. Y., Husain, M., Mohiddin, F. A., Kousar, S., Zahra, S. B. and Rathore, J. P. (2017). Potassium solubilizing microorganisms: mechanism and diversity. International Journal of Pure & Applied Bioscience, 5(5): 653-660.
  • Batu, A. (2004). Determination of acceptable firmness and color values of tomatoes. Journal Food Engineering, 61(3): 471-475.
  • Beneduzi, A., Ambrosini, A. and Passaglia, L. M. P. (2012). Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35(4): 1044-1051.
  • Berger, B., Baldermann, S. and Ruppel, S. (2017). The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum. Journal of the Science of Food and Agriculture, 97: 4865-4871.
  • Bonakdarzadeh, M. (2014). Topraksız tarımda farklı domates çeşitlerinin meyve kalite özelliklerinde mevsimsel değişimler. (Yüksek Lisans Tezi) Ege Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.
  • Boudyach, E. H., Fatmi, M., Akhayat, O., Benizri, E., Aoumar, A. A. B. (2001). Selection of antagonistic bacteria of Clavibacter michiganensis subsp. michiganensis and evaluation of their efficiency against bacterial canker of tomato. Biocontrol Science and Technology, 11(1): 141-149.
  • Brown, A. (2007). Understanding Food Principles and Preparation. Thomson Higher Education 10 Davis Drive Belmont, CA 9402- 3098, p 672, USA.
  • Compant, S., Duffy, B., Nowak., J., Clement., C., Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71: 4951-4959.
  • Cordero, I., Balaguer, L., Rincón, A. and Pueyo, J. J. (2018). Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 181(5): 694-703.
  • Dixon, R. and Kahn, D. (2004). Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, 2(8): 621-631.
  • Gallo, M., Ferrara, L., Calogero, A., Montesano, D. and Naviglio, D. (2020). Relationships between food and diseases: what to know to ensure food safety. Food Research International, 137: 109414.
  • García, J. A. L., Probanza, A., Ramos, B., Palomino, M., Mañero, F. J. G. (2004). Effect of inoculation of Bacillus licheniformis on tomato and pepper. Agronomie, 24(4): 169-176.
  • Karthika, S., Varghese, S. and Jisha, M. S. (2020). Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10: 320.
  • Khalid, M., Hassani, D., Bilal, M., Liao, J. and Huang, D. (2017). Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLOS ONE, 12(5): e0177185.
  • Kiracı, S. and Karataş, A. (2015). Organik domates yetiştiriciliğinde bitki aktivatörü uygulamalarının verim ve kalite üzerine etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 12(1): 17-22.
  • Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M. C. and Moore, L. W. (1990). Inoculation of Plant Tissues. Methods in Phytobacteriology. Akademiai Kiado, Budapest, Hungary.
  • Kotan, R. and Tozlu, E. (2021). Bazı pestisitlerin faydalı bakteriler ve patojen bakteriler üzerine bakterisidal etkilerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 18(2): 197-212.
  • Lakhdar, A., Iannelli, M. A., Debez, A., Massacci, A., Jedidi, N. and Abdelly, C. (2010). Effect of municipal solid waste compost and sewage sludge use on wheat (Triticum durum): growth, heavy metal accumulation, and antioxidant activity. Journal of the Science of Food and Agriculture, 90(6): 965-971.
  • Louden, B. C., Haarmann, D. and Lynne, A. M. (2011). Use of blue agar CAS assay for siderophore detection. Journal of Microbiology and Biology Education, 12(1): 51-53.
  • Lugtenberg, B. and Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63: 541-556.
  • Lurthy, T., Cantat, C., Jeudy, C., Declerck, P., Gallardo, K., Barraud, C., Leroy, F., Ourry, A., Lemanceau, P., Salon, C. and Mazurier, S. (2020). Impact of bacterial siderophores on iron status and ionome in pea. Frontiers in Plant Science, 11: 730.
  • Mason-D'croz, D., Bogard, J. R., Sulser, T. B., Cenacchi, N., Dunston, S., Herrero, M. and Wiebe, K. (2019). Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. The Lancet Planetary Health, 3(7): e318-e329.
  • Niranjiyan, R. S., Shetty, H. S. and Reddy, M. S. (2006). Plant Growth Promoting Rhizobacteria: Potential Gren Alternative for Plant Productivity. PGPR: Biocontrol and Biofertlization. Springer, The Netherlands.
  • Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A. and Ahmed, A. H. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research, 209: 21-32.
  • Oral, S. F. and Kotan, R. (2021). Bitki gelişimini teşvik eden bakterilerin domateste bitki gelişim parametreleri, verim ve bitki sağlığı üzerine etkisi. Türkiye Biyolojik Mücadele Dergisi, 12(1): 47-65.
  • Özkaplan, M. and Balkaya, A. (2019). Işık ve sıcaklığın topraksız tarım koşullarında salkım domatesin meyve kalitesine etkisi. Anadolu Tarım Bilimleri Dergisi, 37: 227-238.
  • Öztekin, G. B., Tüzel, Y. and Mehmet, E. (2015). Potasyum çözücü bakteri aşılamasının sera domates yetiştiriciliğinde bitki gelişimi, verim ve meyve kalitesi üzerine etkileri. Türkiye Tarımsal Araştırmalar Dergisi, 3(1): 41-47.
  • Özyılmaz, Ü. (2007). Aydın ilinde çilek kök hastalıklarına karşı antagonist bakterilerle biyolojik savaş. (Doktora Tezi) Adnan Menderes Üniversitesi, Aydın.
  • Penrose, D. M. and Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria. Physiologia Plantarum, 118(1): 10-15.
  • Porcel, R., Zamarreño, Á. M., García-Mina, J. M. and Aroca, R. (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14(1): 1-12.
  • Rai, A. and Nabti, E. (2017). Plant Growth-Promoting Bacteria: Importance in Vegetable Production. Microbial Strategies for Vegetable Production. Springer Cham, Hungarica.
  • Rezzonico, F., Zala, M., Keel, C., Duffy, B., Moënne‐Loccoz, Y. and Défago, G. (2007). Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4‐diacetylphloroglucinol really synonymous with higher plant protection?. New Phytologist, 173(4): 861-872.
  • Sadou, O., Aycan, M., Taher, M., Kayan, M. and Yıldız, M. (2016). Tuz stresinin ayçiçeğinin (Helianthus annuus L.) fide gelişimi üzerine etkisi. Tarım Bilimleri Araştırma Dergisi, 9(1): 13-17.
  • Saharan, B. S. and Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21(1): 30.
  • Şahin, B. U. and DÖnmez, M. F. (2020). Farklı bakteri uygulamalarının domates (Solanum lycopersicum L.) bitki gelişimi üzerine etkileri. Journal of the Institute of Science and Technology, 10(3): 1507-1517.
  • Samaras, A., Roumeliotis, E., Ntasiou, P. and Karaoglanidis, G. (2021). Bacillus subtilis MBI600 promotes growth of tomato plants and induces systemic resistance contributing to the control of soilborne pathogens. Plants, 10: 1113.
  • Santoyo, G., Urtis-Flores, C. A., Loeza-Lara, P. D., Orozco-Mosqueda, M. and Glick, B. R. (2021). Rhizosphere colonization determinants by plant growth-promoting rhizobacteria (PGPR). Biology, 10: 475.
  • Shahid, M., Khan, M. S., Syed, A., Marraiki, N. and Elgorban, A. M. (2021). Mesorhizobium ciceri as biological tool for improving physiological, biochemical and antioxidant state of Cicer aritienum (L.) under fungicide stress. Scientific Reports, 11: 9655.
  • SPSS (2010). SPSS 17.0 for windows evaluation version, SPSS Inc., Illinois, USA.
  • Tan, C. Y., Dodd, I. C., Chen, J. E., Phang, S. M., Chin, C. F., Yow, Y. Y. and Ratnayeke, S. (2021). Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview. Journal of Applied Phycology, 33: 2995-3023.
  • Tireng Karut, Ş., Horuz, S. and Aysan, Y. (2019). Domates bakteriyel kanser ve solgunluk hastalığı etmeni Clavibacter michiganensis subsp. michiganensis’ in tohumda aranması ve tohum uygulamalarının patojen gelişimine etkisinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 16(3): 284-296.
  • Toprak, E. and Gül A. (2013). Topraksız tarımda kullanılan ortam domates verimi ve kalitesini etkiliyor mu? Tarım Bilimleri Araştırma Dergisi, 6(2): 41-47.
  • TÜİK (2022). Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr (Erişim Tarihi: 02.04.2023).
  • Tüzel, Y., Duyar, H., Öztekin, G. B. and Gül, A. (2009). Domates anaçlarının farklı dikim tarihlerinde bitki gelişimi, sıcaklık toplamı isteği, verim ve kaliteye etkileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 46(2): 79-92.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., Rao, V. R., Kalam, S. and Podile, A. R. (2014). Preferential promotion of Lycopersicon esculentum (Tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54: 403-412.
  • Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119: 243-254.
  • Venkadesaperumal, G., Amaresan, N. and Kumar, K. (2014). Plant growth promoting capability and genetic diversity of bacteria isolated from mud volcano and lime cave of Andaman and Nicobar Islands. Brazilian Journal of Microbiology, 45(4): 1271-1281.
  • Verla, A. W., Enyoh, C. E., Verla, E. N. and Nwarnorh, K. O. (2019). Microplastic-toxic chemical interaction: a review study on quantified levels, mechanism and implication. SN Applied Sciences, 1: 1400.
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of experimental Botany, 52(suppl_1): 487-511.
  • Yilihamu, A., Ouyang, B., Ouyang, P., Bai, Y., Zhang, Q., Shi, M., Guan, X. and Yang, S. T. (2020). Interaction between graphene oxide and nitrogen-fixing bacterium Azotobacter chroococcum: transformation, toxicity and nitrogen fixation. Carbon, 160: 5-13.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Plant Protection (Other)
Journal Section Articles
Authors

Cengiz Dönmez 0009-0007-1966-6151

Mesude Figen Dönmez 0000-0002-7992-8252

Işıl Temel 0000-0001-5968-3609

İrfan Çoruh 0000-0002-6569-6163

Early Pub Date March 5, 2024
Publication Date March 13, 2024
Submission Date April 11, 2023
Acceptance Date October 5, 2023
Published in Issue Year 2024 Volume: 21 Issue: 2

Cite

APA Dönmez, C., Dönmez, M. F., Temel, I., Çoruh, İ. (2024). Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 21(2), 416-428. https://doi.org/10.33462/jotaf.1279053
AMA Dönmez C, Dönmez MF, Temel I, Çoruh İ. Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi. JOTAF. March 2024;21(2):416-428. doi:10.33462/jotaf.1279053
Chicago Dönmez, Cengiz, Mesude Figen Dönmez, Işıl Temel, and İrfan Çoruh. “Bitki Gelişimini Destekleyici Rizobakteriler Ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 2 (March 2024): 416-28. https://doi.org/10.33462/jotaf.1279053.
EndNote Dönmez C, Dönmez MF, Temel I, Çoruh İ (March 1, 2024) Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 21 2 416–428.
IEEE C. Dönmez, M. F. Dönmez, I. Temel, and İ. Çoruh, “Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi”, JOTAF, vol. 21, no. 2, pp. 416–428, 2024, doi: 10.33462/jotaf.1279053.
ISNAD Dönmez, Cengiz et al. “Bitki Gelişimini Destekleyici Rizobakteriler Ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 21/2 (March 2024), 416-428. https://doi.org/10.33462/jotaf.1279053.
JAMA Dönmez C, Dönmez MF, Temel I, Çoruh İ. Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi. JOTAF. 2024;21:416–428.
MLA Dönmez, Cengiz et al. “Bitki Gelişimini Destekleyici Rizobakteriler Ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 2, 2024, pp. 416-28, doi:10.33462/jotaf.1279053.
Vancouver Dönmez C, Dönmez MF, Temel I, Çoruh İ. Bitki Gelişimini Destekleyici Rizobakteriler ve Kimyasal Gübrelerin Domates Yetiştiriciliğine Etkisi. JOTAF. 2024;21(2):416-28.