Research Article
BibTex RIS Cite

Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi

Year 2024, Volume: 21 Issue: 3, 732 - 747, 27.05.2024
https://doi.org/10.33462/jotaf.1362744

Abstract

Bu çalışma ile bazı organik madde uygulamalarının (zeytin karasuyu, tavuk gübresi, kükürt, pamuk delintasyon atığı, vermikompost; bitki artığı olarak soğan, pırasa, karnabahar, brokoli, lahana, buğday, bakla, marul, hardal bitkileri) çilek bitki gelişimi ve Macrophomina phaseolina’nın çilekte neden olduğu taç ve kök çürüklüğü ve mikrosklerot popülasyonu üzerine etkisini incelemek amacıyla yürütülmüştür. Organik madde uygulamalarının doğrudan mikrosklerot popülasyonu, çilekte bitki gelişimi ve M. phaseolina’nın neden olduğu taç ve kök çürüklüğü hastalığı ve bitkiler söküldükten sonra bu saksı topraklarında mikrosklerot popülasyonu üzerine etkisi araştırılmıştır. Bu amaçla organik madde karıştırılmış steril topraklara çilekten izole edilmiş M. phaseolina izolatı (Omp1) mikrosklerot 50 ms/g olacak şekilde inokule edilmiş ve 30 gün inkube edilmiştir. Bu topraklardan yapılan mikrosklerot izolasyonlarında, topraktaki en düşük mikrosklerot sayısı sırasıyla zeytin karasuyu (0.8 ms/g toprak), brokoli (2.5 ms g-1 toprak), vermikompost (6.0 ms g-1 toprak) ve hardal (6.7 ms g-1 toprak) olarak saptanmış, pozitif kontrolde ise 1 g toprakta 84 mikrosklerot saptanmıştır. Organik madde uygulamalarında bitki gelişimine etkisi açısından en iyi sonucu sırasıyla %84.5 ağırlık artışı ile tavuk gübresi, %66 ile kükürt (100 kg da-1) ve %61.9 ile kükürt (50 kg da-1) uygulamalarında olmuştur. M. phaseolina’ nın neden olduğu taç ve kök çürüklüğü hastalığı açısından ise bitkilerin ağırlık değişimlerinin %-20.4 ile %42.7 arasında değiştiği saptanmıştır. Kükürt (50 kg da-1) uygulamasında %42.7 oranında ağırlık artışı saptanırken bunu, %37.9 ile kükürt (100 kg da-1) izlemiş pırasa uygulamasında ise %20.4 oranında bir ağılık kaybı olmuştur. Çalışmada bitkiler söküldükten sonra saksı toprağında saptanan mikrosklerot sayıları ise Karnabahar+Mp uygulamasında 1 g toprakta 12 mikrosklerot saptanırken Kükürt 100 kg da-1+Mp uygulamasında 1 g toprakta 28.8 ile en yüksek mikrosklerot sayısı saptanmıştır. Sonuç olarak, gelecekteki çalışmalar, toprağın fiziksel ve kimyasal özelliklerine bağlı olarak en uygun zamanlamanın yanı sıra organik madde miktarı ve türü ile çevresel koşulları ele almalıdır.

References

  • Almeida, M. R., Sosa-Gomez, D. R., Binneck, E., Marin, S. R. R., Zucchi, M. I., Abdelnoor, R. V. and Souto, E. R. (2008). Effect of crop rotation on specialization and genetic diversity of Macrophomina phaseolina. Tropical Plant Pathology, 33:257−264.
  • Arancon, N. Q., Edwards, C. A. and Bierman, P. (2006). Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource technology, 97:831–840. https://doi.org/10.1016/j.biortech.2005.04.016
  • Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C. and Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. effects on growth and yields. Bioresource Technology, 93(2): 145–153. https://doi.org/10.1016/j.biortech.2003.10.014
  • Arora, N. K., Kang, S. C. and Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6): 673–677.
  • Avilés, M., Castillo, S., Bascon, J., Zea-Bonilla, T., Martín-Sánchez, P. M. and Pérez-Jiménez, R. M. (2008). First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathology, 57:382. https://doi.org/10.1111/j.1365-3059.2007.01717.x
  • Avilés, M., Castillo, S., Bascon, J., Zea-Bonilla, T., Martín-Sánchez, P. M. and Pérez-Jiménez, R. M. (2009). Response of strawberry cultivars: ‘Camarosa’, ‘Candonga’ and ‘Ventane’ to inoculation with isolates of Macrophomina phaseolina. Acta Horticulturae, 842: 291-294.
  • Aysan, M., Kozak Özdemir, S. ve Erkılıç, A. (2019). Çilekte Rhizoctonia Kök çürüklüğü (Rhizoctonia solani)’ne karşı bazı bitki aktivatörlerinin etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 16(2): 173-180. https://doi.org/10.33462/jotaf.521637
  • Benlioğlu, S., Boz, Ö., Yıldız, A., Kaşkavalcı, G. and Benlioğlu, K., (2005). Alternative soil solarization treatments for the control of soil-borne diseases and weeds of strawberry in the western Anatolia of Turkey. Journal of Phytopathology, 153:423–430. https://doi.org/10.1111/j.1439-0434.2005.00995.x
  • Benlioǧlu, S., Yildiz, A. and Döken, T. (2004). Studies to determine the causal agents of soil-borne fungal diseases of strawberries in aydin and to control them by soil disinfestation. Journal of Phytopathology, 152:509–513. https://doi.org/10.1111/j.1439-0434.2004.00888.x
  • Bianchi, A., Zambonelli, A., D’Aulerio, A. Z. and Bellesia, F. (1997). Ultrastructural studies of the effects of Allium sativum on phytopathogenic fungi in vitro. Plant disease, 81:1241–1246. https://doi.org/10.1094/PDIS.1997.81.11.1241
  • Bloem, E., Haneklaus, S. and Schnug, E. (2015). Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science, 5, 779. https://doi.org/10.3389/fpls.2014.00779
  • Casa, R., D'Annibale, A., Pieruccetti, F., Stazi, S. R., Giovannozzi Sermanni, G. and Lo Cascio, B. (2003). Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50(8): 959–966. https://doi.org/10.1016/s0045-6535(02)00707-5
  • Chakraborty, U. and Purkayastha, R.P. (1984). Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Canadian Journal of Microbiology, 30(3): 285-289.
  • Chamorro, M., Domínguez, P., Medina, J. J., Miranda, L., Soria, C., Romero, F. and De los Santos, B. (2015a). Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Scientia Horticulturae, (Amsterdam) 192:361–368. https://doi.org/10.1016/j.scienta.2015.03.029
  • Chamorro, M., Miranda, L., Dom´inguez, P., Medina, J. J., Soria, C., Romero, F. and De los Santos, B. (2015b) Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Protection, 67:279–286. https://doi.org/10.1016/j.cropro.2014.10.021
  • Delia, P., Sponza, T., İhsan, P., Kayıkçıoğlu, H. H. ve Yağmur, B. (2016). Ekonomik yöntemlerle arıtılmış zeytin karasuyunun tarım topraklarında kullanım olanakları. Tübitak-Tovag (113O558) Proje Sonuç Raporu.
  • El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J. and Hafidi, A. (2017). Potential applications of olive mill wastewater as biopesticide for crops protection. The Science of the total environment, 576: 10–21. https://doi.org/10.1016/j.scitotenv.2016.10.032
  • Eren, O. ve Gül, Ş. (2010). Zeytin karasuyunda bulunan bazi toksik bileşiklerin ön kireç çöktürme ve katalitik ozonlama ile parçalanmaları. Ç.Ü Fen ve Mühendislik Bilimleri Dergisi, 2012 (28-4): 117-126.
  • Francl, L. J., Wyllie, T. D. and Rosenbrock, S. M. (1988). Influence of Crop Rotation on Population Density of Macrophomina phaseolina in Soil Infested with Heterodera glycines. Plant disease, 72:760–764. https://doi.org/10.1094/PD-72-0760
  • Gamliel, A., Austerweil, M. and Kritzman, G. (2000). Non-chemical approach to soilborne pest management - Organic amendments. Crop Protection\ 19:847–853. https://doi.org/10.1016/S0261-2194(00)00112-5
  • Ghosheh, H. Z., Hameed, K. M., Turk, M. A. and Al-Jamali, A. F. (1999). Olive (Olea europea) jift suppresses broomrape (Orobanche spp.) infections in faba bean (Vicia faba), pea (Pisum sativum) and Tomato (Lycopersicon esculentum). Weed Technology, 13:457–460.
  • Golzar, H., Phillips, D. and Mack, S. (2007). Occurrence of strawberry root and crown rot in Western Australia. Australasian Plant Disease Notes, 2:145. https://doi.org/10.1071/dn07057
  • Gougoulias, N., Vagelas, I., Papachatzis, A., Stergiou, E., Chouliaras, N. and Chouliara, A. (2013). Chemical and biological properties of a sandy loam soil amended with olive mill waste, solid or liquid form, in vitro. International Journal of Recycling of Organic Waste in Agriculture, 2:13. https://doi.org/10.1186/2251-7715-2-13
  • Hancock, J. F., Maas, J. L., Shanks, C. H., Breen, P. J. and Luby, J. J. (1991). Strawberries (Fragaria). Acta Horticulturae, 290: 491–546.
  • Haramoto, E. R. and Gallandt, E. R. (2004). Brassica cover cropping for weed management: A review. Renewable Agriculture and Food Systems: 19:187–198. https://doi.org/10.1079/rafs200490
  • Isidori, M., Lavorgna, M., Nardelli, A. and Parrella, A. (2005). Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53(21): 8414–8417. https://doi.org/10.1021/jf0511695
  • Israel, S., Mawar, R. and Lodha, S. (2005). Soil solarisation, amendments and bio-control agents for the control of Macrophomina phaseolina and Fusarium oxysporum f.sp. cumini in aridisols. Annals of Applied Biology, 146:481–491. https://doi.org/10.1111/j.1744-7348.2005.040127.x
  • Joshi, R., Singh, J. and Vig, A. P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology ,14:137–159. https://doi.org/10.1007/s11157-014-9347-1
  • Kacar, B. (1996). Bitki ve Toprağın Kimyasal Analizleri III. (Chemical analysis of plant and soil. III: in Turkish) Ankara, Turkey: Publication of Education, Research and Improving Foundation, Agricultural Faculty, Ankara University No. 3.
  • Kao, P. H., Huang, C. C., Hseu, Z. Y. (2006). Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 64:63–70. https://doi.org/10.1016/j.chemosphere.2005.11.039
  • Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R. and Chauhan, V. B. (2012). Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology, 38(2): 136-151. https://doi.org/10.3109/1040841X.2011.640977
  • Kirkegaard, J. A. and Sarwar, M. (1998) Biofumigation potential of brassicas. Plant and Soil, 201:71–89. https://doi.org/10.1023/A:1004364713152
  • Koike, S. T. (2008). Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Disease, 92:1253. https://doi.org/10.1094/PDIS-92-8-1253B
  • Kotsou, M., Mari, I., Lasaridi, K., Chatzipavlidis, I., Balis, C. and Kyriacou, A. (2004). The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Applied Soil Ecology 26:113–121. https://doi.org/10.1016/j.apsoil.2003.12.001
  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P. and Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International journal of environmental research and public health, 16(19): 3521. https://doi.org/10.3390/ijerph16193521
  • Larkin, R. P. and Lynch, R. P. (2018). Use and effects of different brassica and other rotation crops on soilborne diseases and yield of Potato. Horticulturae, 4:1–16. https://doi.org/10.3390/horticulturae4040037
  • Lodha, S. (1995). Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f. sp. cumini and Macrophomina phaseolina in arid soils. Crop Protection, 14:215–219. https://doi.org/10.1016/0261-2194(95)00014-D
  • López-Escudero, F. J., Mwanza, C. and Blanco-López, M. A. (2007). Reduction of Verticillium dahliae microsclerotia viability in soil by dried plant residues. Crop Protection, 26:127–133. https://doi.org/10.1016/j.cropro.2006.04.011
  • Magdich, S., Ben Ahmed, C., Jarboui, R., Ben Rouina, B., Boukhris, M. and Ammar, E. (2013). Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere, 93(9): 1896–1903. https://doi.org/10.1016/j.chemosphere.2013.06.066
  • Majumder, S., Datta, K., Sarkar, C., Saha, S. C. and Datta, S. K. (2018). The development of Macrophomina phaseolina (fungus) resistant and glufosinate (herbicide) tolerant transgenic jute. Frontiers in Plant Science, 9: 920.
  • Marquez, N., Giachero, M. L., Declerck, S. and Ducasse, D. A. (2021). Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Frontiers in plant science, 12: 634397. https://doi.org/10.3389/fpls.2021.634397
  • Matthiessen, J. and Kirkegaard, J. (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25:235–265. https://doi.org/10.1080/07352680600611543
  • Mechri, B., Chehab, H., Attia, F., Mariem, F. B., Braham, M. and Hammami, M. (2010). Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. European Journal of Soil Biology, 46:312–318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  • Mekki, A., Dhouib, A. and Sayadi, S. (2006). Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research,161:93–101. https://doi.org/10.1016/j.micres.2005.06.001
  • Mertely, J., Seijo, T. and Peres, N. (2005). First Report of Macrophomina phaseolina Causing a Crown Rot of Strawberry in Florida. Plant Disease, 89(4): 434. https://doi.org/10.1094/PD-89-0434A
  • Meyer, W. A., Sinclair, J. B. and Khare, M. N. (1973). Biology of Macrophomina phaseoli in Soil Studied with Selective Media. Phytopathology, 63:613–620. https://doi.org/10.1094/Phyto-63-613
  • Mihail, J. and Alcorn, S., (1982). Quantitative Recovery of Macrophomina phaseolina Sclerotia from Soil. Plant disease, 66:662–663. https://doi.org/10.1094/PD-66-662
  • Moricca, S., Uccello, A., Ginetti, B. and Ragazzi, A. (2012) First report of Neofusicoccum parvum associated with bark canker and dieback of Acer pseudoplatanus and Quercus robur in Italy. Plant disease, 96:1699. https://doi.org/10.1094/PDIS-06-12-0543-PDN
  • Ndiaye, M. (2007). Ecology and management of charcoal rot (Macrophomina phaseolina) on cowpea in the Sahel. (PhD Thesis) Wageningen University, Netherlands.
  • Njoroge, S. M. C., Riley, M. B. and Keinath, A. P. (2008). Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant disease, 92:287–294. https://doi.org/10.1094/PDIS-92-2-0287
  • Norsworthy, J. K. (2003). Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technology, 17(2): 307-313.
  • Papavizas, G. C. and Lewis, J. (1971). Effect of amendments and fungicides on aphanomyces root rot of peas. Phytopathology, 61:215–220. https://doi.org/10.1094/phyto-61-215
  • Pathma, J. and Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1: 26. https://doi.org/10.1186/2193-1801-1-26
  • Raja, J. and Kurucheve, V. (1998). Influence of plant extracts and Buffalo urine on the growth and sclerotial germination of Macrophomina phaseolina. Indian Phytopathology, 51:102–103.
  • Riegel, C., Fernandez, F. A. and Noe, J. P. (1996). Meloidogyne incognita infested soil amended with chicken litter. Journal of Nematology, 28(3): 369–378.
  • Ristaino, J. B. (1991). Effect of solarization and Gliocladium virens on Sclerotia of Sclerotium rolfsii, soil microbiota, and the incidence of southern blight of tomato. Phytopathology, 81:1117–1124. https://doi.org/10.1094/phyto-81-1117
  • Ristaino, J. B. and Thomas, W. (1996). Agriculture, Methyl Bromide, and the Ozone Hole: Can We Fill the Gaps? Plant Disease, 81:964–977. https://doi.org/10.1094/PDIS.1997.81.9.964
  • Sarwar, M. and Kirkegaard, J. A. (1998). Biofumigation potential of brassicas: II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant and Soil, 201(1): 91–101.
  • Scherer, H. W. (2001). Sulphur in crop production - Invited paper. European Journal of agronomy, 14:81–111. https://doi.org/10.1016/S1161-0301(00)00082-4
  • Sheikh, A. H. and Ghaffar, A. (1979). Relation of sclerotial inoculum density and soil moisture to infection of field crops by Macrophomina phaseolina. Pakistan Journal of Botany, 11:185–189.
  • Shetty, K. G., Subbarao, K. V., Huisman, O. C. and Hubbard, J. C. (2000). Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology, 90:305–310. https://doi.org/10.1094/PHYTO.2000.90.3.305
  • Short, G. E., Wyllie, T. D. and Bristow, P. R., (1980). Survival of Macrophomina phaseolina in soil and in residue of soybean. Phytopathology, 70:13–17.
  • Smolińska, U. (2000). Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. Journal of Phytopathology, 148:343–349. https://doi.org/10.1046/j.1439-0434.2000.00519.x
  • Songa, W. and Hillocks, R. J. (1996) Legume hosts of Macrophomina phaseolina in Kenya and effect of crop species on soil inoculum levels. Journal of Phytopathology, 144:387–391. https://doi.org/10.1111/j.1439-0434.1996.tb00311.x
  • Subbarao, K. V. and Hubbard, J. C. (1996). Interactive effects of broccoli residue and temperature on Verticillium dahliae microsclerotia in soil and on wilt in cauliflower. Phytopathology, 86:1303–1310. https://doi.org/10.1094/Phyto-86-1303
  • Subbarao, K. V., Kabir, Z., Martin, F. N. and Koike, S. T. (2007). Management of soilborne diseases in strawberry using vegetable rotations. Plant Disease, 91:964–972. https://doi.org/10.1094/PDIS-91-8-0964
  • Tardioli, S., Bànnè, E. and Santori, F. (1997). Species-specific selection on soil fungal population after olive mill waste-water treatment. Chemosphere, 34(11): 2329–2336. https://doi.org/10.1016/s0045-6535(97)00044-1
  • Turhan, A. and Özmen, N. (2021). Effects of Chemical and Organic Fertilizer Treatments on Yield and Quality Traits of Industrial Tomato, Tekirdağ Ziraat Fakültesi Dergisi, 18(2): 213 – 221. https://doi.org/10.33462/jotaf.741367
  • Vig, A. P, Rampal, G., Thind, T. S. and Arora, S. (2009). Bio-protective effects of glucosinolates - A review. LWT - Food Science and Technology, 42:1561–1572. https://doi.org/10.1016/j.lwt.2009.05.023
  • Vijayabharathi, R., Sathya, A. and Gopalakrishnan, S. (2015). Plant Growth-Promoting Microbes from Herbal Vermicompost. In: Varma DES (ed) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, Soil Biology, vol 42. Springer, Cham, pp 71–88. Springer, https://doi.org/10.1007/978-3-319-13401-7_4
  • Wanniarachchi, S. D. and Voroney, R. P. (1997). Phytotoxicity of canola residues: Release of water-soluble phytotoxins. Canadian Journal of Soil Science, 77:535–541. https://doi.org/10.4141/S94-083
  • Williams, J. S. and Cooper, R. M. (2004). The oldest fungicide and newest phytoalexin - A reappraisal of the fungitoxicity of elemental sulphur. Plant Pathology, 53:263–279. https://doi.org/10.1111/j.0032-0862.2004.01010.x
  • Yildiz, A., Benlioǧlu, S., Boz, Ö. and Benlioǧlu, K. (2010). Use of different plastics for soil solarization in strawberry growth and time-temperature relationships for the control of Macrophomina phaseolina and weeds. Phytoparasitica 38:463–473. https://doi.org/10.1007/s12600-010-0123-7
  • Yildiz, A., Ozyılmaz, Ü., Benlioglu , H. S. and Benlioglu,. K. (2007). Effect of soil solarization with amendments to soil-born fungal pathogens and yield in strawbeny production. The Journal of Turkish Phytopathology, 36:53–63.
  • Zenda, T., Liu, S., Dong, A. and Duan, H. (2021). Revisiting Sulphur—The Once neglected nutrient: it’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7): 626. http://dx.doi.org/10.3390/agriculture11070626
  • Zhang, D., Cheng, H., Hao, B. et al. (2021). Effect of fresh chicken manure as a non-chemical soil fumigant on soil-borne pathogens, plant growth and strawberry fruit profitability. Crop Protection,146:105653. https://doi.org/10.1016/J.CROPRO.2021.105653
  • Zveibil, A. and Freeman, S. (2005). First Report of Crown and Root Rot in Strawberry Caused by Macrophomina phaseolina in Israel. Plant Disease, 89:1014–1014. https://doi.org/10.1094/pd-89-1014c
  • Zveibil, A., Mor, N., Gnayem, N., Freeman, S. (2012). Survival, host-pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Disease, 96:265–272. https://doi.org/10.1094/PDIS-04-11-0299

The Effect of Some Organic Amendments on Strawberry Plant Growth and The Number of Microsclerotia in The Soil, As Well As Crown and Root Rot Disease Caused by Macrophomina phaseolina (Tassi) Goid.

Year 2024, Volume: 21 Issue: 3, 732 - 747, 27.05.2024
https://doi.org/10.33462/jotaf.1362744

Abstract

This study aimed to investigate the effects of some organic material applications, including olive mill wastewater, chicken manure, sulfur, cotton waste, vermicompost, and plant residues such as onion, leek, cauliflower, broccoli, cabbage, wheat, bean, lettuce, and mustard, on strawberry plant growth and crown and root rot caused by M. phaseolina. The direct effect of organic material applications on the microsclerotia population, strawberry plant growth, and the microsclerotia population in these pot soils after plant removal was investigated. For this purpose, the M. phaseolina isolate (Omp1) was inoculated into sterilized soils mixed with organic materials at a rate of 50 ms/g and incubated for 30 days. The lowest microsclerotia count in the soil was found with olive mill wastewater (0.8 ms/g soil), broccoli (2.5 ms/g soil), vermicompost (6.0 ms/g soil), and mustard (6.7 ms/g soil) in organic material applications, whereas the positive control had 84 microsclerotia detected in 1 g of soil. Regarding the effect on plant growth in organic material applications, the best result was obtained with chicken manure, which showed a weight gain of 84.5%, followed by sulfur applications at 66% (100 kg da-1) and 61.9% (50 kg da-1). In terms of crown and root rot caused by M. phaseolina, the weight changes of the plants varied between -20.4% and 42.7%. The sulfur (50 kg da-1) application showed a weight gain of 42.7%, followed by a weight gain of 37.9% with the sulfur (100 kg da-1) application, while a weight loss of 20.4% was observed in the leek application. The microsclerotia counts detected in the pot soil after plant removal were 12 microsclerotia in the cauliflower+Mp application, while the highest microsclerotia count was 28.8 in the sulfur 100 kg da-1+Mp application. In conclusion, future studies should address the optimal timing depending on the physical and chemical properties of the soil, as well as the amount and type of organic matter and environmental conditions.

References

  • Almeida, M. R., Sosa-Gomez, D. R., Binneck, E., Marin, S. R. R., Zucchi, M. I., Abdelnoor, R. V. and Souto, E. R. (2008). Effect of crop rotation on specialization and genetic diversity of Macrophomina phaseolina. Tropical Plant Pathology, 33:257−264.
  • Arancon, N. Q., Edwards, C. A. and Bierman, P. (2006). Influences of vermicomposts on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Bioresource technology, 97:831–840. https://doi.org/10.1016/j.biortech.2005.04.016
  • Arancon, N. Q., Edwards, C. A., Bierman, P., Welch, C. and Metzger, J. D. (2004). Influences of vermicomposts on field strawberries: 1. effects on growth and yields. Bioresource Technology, 93(2): 145–153. https://doi.org/10.1016/j.biortech.2003.10.014
  • Arora, N. K., Kang, S. C. and Maheshwari, D. K. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Current Science, 81(6): 673–677.
  • Avilés, M., Castillo, S., Bascon, J., Zea-Bonilla, T., Martín-Sánchez, P. M. and Pérez-Jiménez, R. M. (2008). First report of Macrophomina phaseolina causing crown and root rot of strawberry in Spain. Plant Pathology, 57:382. https://doi.org/10.1111/j.1365-3059.2007.01717.x
  • Avilés, M., Castillo, S., Bascon, J., Zea-Bonilla, T., Martín-Sánchez, P. M. and Pérez-Jiménez, R. M. (2009). Response of strawberry cultivars: ‘Camarosa’, ‘Candonga’ and ‘Ventane’ to inoculation with isolates of Macrophomina phaseolina. Acta Horticulturae, 842: 291-294.
  • Aysan, M., Kozak Özdemir, S. ve Erkılıç, A. (2019). Çilekte Rhizoctonia Kök çürüklüğü (Rhizoctonia solani)’ne karşı bazı bitki aktivatörlerinin etkileri. Tekirdağ Ziraat Fakültesi Dergisi, 16(2): 173-180. https://doi.org/10.33462/jotaf.521637
  • Benlioğlu, S., Boz, Ö., Yıldız, A., Kaşkavalcı, G. and Benlioğlu, K., (2005). Alternative soil solarization treatments for the control of soil-borne diseases and weeds of strawberry in the western Anatolia of Turkey. Journal of Phytopathology, 153:423–430. https://doi.org/10.1111/j.1439-0434.2005.00995.x
  • Benlioǧlu, S., Yildiz, A. and Döken, T. (2004). Studies to determine the causal agents of soil-borne fungal diseases of strawberries in aydin and to control them by soil disinfestation. Journal of Phytopathology, 152:509–513. https://doi.org/10.1111/j.1439-0434.2004.00888.x
  • Bianchi, A., Zambonelli, A., D’Aulerio, A. Z. and Bellesia, F. (1997). Ultrastructural studies of the effects of Allium sativum on phytopathogenic fungi in vitro. Plant disease, 81:1241–1246. https://doi.org/10.1094/PDIS.1997.81.11.1241
  • Bloem, E., Haneklaus, S. and Schnug, E. (2015). Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe. Frontiers in Plant Science, 5, 779. https://doi.org/10.3389/fpls.2014.00779
  • Casa, R., D'Annibale, A., Pieruccetti, F., Stazi, S. R., Giovannozzi Sermanni, G. and Lo Cascio, B. (2003). Reduction of the phenolic components in olive-mill wastewater by an enzymatic treatment and its impact on durum wheat (Triticum durum Desf.) germinability. Chemosphere, 50(8): 959–966. https://doi.org/10.1016/s0045-6535(02)00707-5
  • Chakraborty, U. and Purkayastha, R.P. (1984). Role of rhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection. Canadian Journal of Microbiology, 30(3): 285-289.
  • Chamorro, M., Domínguez, P., Medina, J. J., Miranda, L., Soria, C., Romero, F. and De los Santos, B. (2015a). Assessment of chemical and biosolarization treatments for the control of Macrophomina phaseolina in strawberries. Scientia Horticulturae, (Amsterdam) 192:361–368. https://doi.org/10.1016/j.scienta.2015.03.029
  • Chamorro, M., Miranda, L., Dom´inguez, P., Medina, J. J., Soria, C., Romero, F. and De los Santos, B. (2015b) Evaluation of biosolarization for the control of charcoal rot disease (Macrophomina phaseolina) in strawberry. Crop Protection, 67:279–286. https://doi.org/10.1016/j.cropro.2014.10.021
  • Delia, P., Sponza, T., İhsan, P., Kayıkçıoğlu, H. H. ve Yağmur, B. (2016). Ekonomik yöntemlerle arıtılmış zeytin karasuyunun tarım topraklarında kullanım olanakları. Tübitak-Tovag (113O558) Proje Sonuç Raporu.
  • El-Abbassi, A., Saadaoui, N., Kiai, H., Raiti, J. and Hafidi, A. (2017). Potential applications of olive mill wastewater as biopesticide for crops protection. The Science of the total environment, 576: 10–21. https://doi.org/10.1016/j.scitotenv.2016.10.032
  • Eren, O. ve Gül, Ş. (2010). Zeytin karasuyunda bulunan bazi toksik bileşiklerin ön kireç çöktürme ve katalitik ozonlama ile parçalanmaları. Ç.Ü Fen ve Mühendislik Bilimleri Dergisi, 2012 (28-4): 117-126.
  • Francl, L. J., Wyllie, T. D. and Rosenbrock, S. M. (1988). Influence of Crop Rotation on Population Density of Macrophomina phaseolina in Soil Infested with Heterodera glycines. Plant disease, 72:760–764. https://doi.org/10.1094/PD-72-0760
  • Gamliel, A., Austerweil, M. and Kritzman, G. (2000). Non-chemical approach to soilborne pest management - Organic amendments. Crop Protection\ 19:847–853. https://doi.org/10.1016/S0261-2194(00)00112-5
  • Ghosheh, H. Z., Hameed, K. M., Turk, M. A. and Al-Jamali, A. F. (1999). Olive (Olea europea) jift suppresses broomrape (Orobanche spp.) infections in faba bean (Vicia faba), pea (Pisum sativum) and Tomato (Lycopersicon esculentum). Weed Technology, 13:457–460.
  • Golzar, H., Phillips, D. and Mack, S. (2007). Occurrence of strawberry root and crown rot in Western Australia. Australasian Plant Disease Notes, 2:145. https://doi.org/10.1071/dn07057
  • Gougoulias, N., Vagelas, I., Papachatzis, A., Stergiou, E., Chouliaras, N. and Chouliara, A. (2013). Chemical and biological properties of a sandy loam soil amended with olive mill waste, solid or liquid form, in vitro. International Journal of Recycling of Organic Waste in Agriculture, 2:13. https://doi.org/10.1186/2251-7715-2-13
  • Hancock, J. F., Maas, J. L., Shanks, C. H., Breen, P. J. and Luby, J. J. (1991). Strawberries (Fragaria). Acta Horticulturae, 290: 491–546.
  • Haramoto, E. R. and Gallandt, E. R. (2004). Brassica cover cropping for weed management: A review. Renewable Agriculture and Food Systems: 19:187–198. https://doi.org/10.1079/rafs200490
  • Isidori, M., Lavorgna, M., Nardelli, A. and Parrella, A. (2005). Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio fischeri metabolism. Journal of Agricultural and Food Chemistry, 53(21): 8414–8417. https://doi.org/10.1021/jf0511695
  • Israel, S., Mawar, R. and Lodha, S. (2005). Soil solarisation, amendments and bio-control agents for the control of Macrophomina phaseolina and Fusarium oxysporum f.sp. cumini in aridisols. Annals of Applied Biology, 146:481–491. https://doi.org/10.1111/j.1744-7348.2005.040127.x
  • Joshi, R., Singh, J. and Vig, A. P. (2015). Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Reviews in Environmental Science and Bio/Technology ,14:137–159. https://doi.org/10.1007/s11157-014-9347-1
  • Kacar, B. (1996). Bitki ve Toprağın Kimyasal Analizleri III. (Chemical analysis of plant and soil. III: in Turkish) Ankara, Turkey: Publication of Education, Research and Improving Foundation, Agricultural Faculty, Ankara University No. 3.
  • Kao, P. H., Huang, C. C., Hseu, Z. Y. (2006). Response of microbial activities to heavy metals in a neutral loamy soil treated with biosolid. Chemosphere, 64:63–70. https://doi.org/10.1016/j.chemosphere.2005.11.039
  • Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R. and Chauhan, V. B. (2012). Emerging phytopathogen Macrophomina phaseolina: biology, economic importance and current diagnostic trends. Critical Reviews in Microbiology, 38(2): 136-151. https://doi.org/10.3109/1040841X.2011.640977
  • Kirkegaard, J. A. and Sarwar, M. (1998) Biofumigation potential of brassicas. Plant and Soil, 201:71–89. https://doi.org/10.1023/A:1004364713152
  • Koike, S. T. (2008). Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Disease, 92:1253. https://doi.org/10.1094/PDIS-92-8-1253B
  • Kotsou, M., Mari, I., Lasaridi, K., Chatzipavlidis, I., Balis, C. and Kyriacou, A. (2004). The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani. Applied Soil Ecology 26:113–121. https://doi.org/10.1016/j.apsoil.2003.12.001
  • Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P. and Basamba, T. A. (2019). How safe is chicken litter for land application as an organic fertilizer? A review. International journal of environmental research and public health, 16(19): 3521. https://doi.org/10.3390/ijerph16193521
  • Larkin, R. P. and Lynch, R. P. (2018). Use and effects of different brassica and other rotation crops on soilborne diseases and yield of Potato. Horticulturae, 4:1–16. https://doi.org/10.3390/horticulturae4040037
  • Lodha, S. (1995). Soil solarization, summer irrigation and amendments for the control of Fusarium oxysporum f. sp. cumini and Macrophomina phaseolina in arid soils. Crop Protection, 14:215–219. https://doi.org/10.1016/0261-2194(95)00014-D
  • López-Escudero, F. J., Mwanza, C. and Blanco-López, M. A. (2007). Reduction of Verticillium dahliae microsclerotia viability in soil by dried plant residues. Crop Protection, 26:127–133. https://doi.org/10.1016/j.cropro.2006.04.011
  • Magdich, S., Ben Ahmed, C., Jarboui, R., Ben Rouina, B., Boukhris, M. and Ammar, E. (2013). Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil. Chemosphere, 93(9): 1896–1903. https://doi.org/10.1016/j.chemosphere.2013.06.066
  • Majumder, S., Datta, K., Sarkar, C., Saha, S. C. and Datta, S. K. (2018). The development of Macrophomina phaseolina (fungus) resistant and glufosinate (herbicide) tolerant transgenic jute. Frontiers in Plant Science, 9: 920.
  • Marquez, N., Giachero, M. L., Declerck, S. and Ducasse, D. A. (2021). Macrophomina phaseolina: General Characteristics of Pathogenicity and Methods of Control. Frontiers in plant science, 12: 634397. https://doi.org/10.3389/fpls.2021.634397
  • Matthiessen, J. and Kirkegaard, J. (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences, 25:235–265. https://doi.org/10.1080/07352680600611543
  • Mechri, B., Chehab, H., Attia, F., Mariem, F. B., Braham, M. and Hammami, M. (2010). Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. European Journal of Soil Biology, 46:312–318. https://doi.org/10.1016/j.ejsobi.2010.06.001
  • Mekki, A., Dhouib, A. and Sayadi, S. (2006). Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiological Research,161:93–101. https://doi.org/10.1016/j.micres.2005.06.001
  • Mertely, J., Seijo, T. and Peres, N. (2005). First Report of Macrophomina phaseolina Causing a Crown Rot of Strawberry in Florida. Plant Disease, 89(4): 434. https://doi.org/10.1094/PD-89-0434A
  • Meyer, W. A., Sinclair, J. B. and Khare, M. N. (1973). Biology of Macrophomina phaseoli in Soil Studied with Selective Media. Phytopathology, 63:613–620. https://doi.org/10.1094/Phyto-63-613
  • Mihail, J. and Alcorn, S., (1982). Quantitative Recovery of Macrophomina phaseolina Sclerotia from Soil. Plant disease, 66:662–663. https://doi.org/10.1094/PD-66-662
  • Moricca, S., Uccello, A., Ginetti, B. and Ragazzi, A. (2012) First report of Neofusicoccum parvum associated with bark canker and dieback of Acer pseudoplatanus and Quercus robur in Italy. Plant disease, 96:1699. https://doi.org/10.1094/PDIS-06-12-0543-PDN
  • Ndiaye, M. (2007). Ecology and management of charcoal rot (Macrophomina phaseolina) on cowpea in the Sahel. (PhD Thesis) Wageningen University, Netherlands.
  • Njoroge, S. M. C., Riley, M. B. and Keinath, A. P. (2008). Effect of incorporation of Brassica spp. residues on population densities of soilborne microorganisms and on damping-off and Fusarium wilt of watermelon. Plant disease, 92:287–294. https://doi.org/10.1094/PDIS-92-2-0287
  • Norsworthy, J. K. (2003). Allelopathic potential of wild radish (Raphanus raphanistrum). Weed Technology, 17(2): 307-313.
  • Papavizas, G. C. and Lewis, J. (1971). Effect of amendments and fungicides on aphanomyces root rot of peas. Phytopathology, 61:215–220. https://doi.org/10.1094/phyto-61-215
  • Pathma, J. and Sakthivel, N. (2012). Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus, 1: 26. https://doi.org/10.1186/2193-1801-1-26
  • Raja, J. and Kurucheve, V. (1998). Influence of plant extracts and Buffalo urine on the growth and sclerotial germination of Macrophomina phaseolina. Indian Phytopathology, 51:102–103.
  • Riegel, C., Fernandez, F. A. and Noe, J. P. (1996). Meloidogyne incognita infested soil amended with chicken litter. Journal of Nematology, 28(3): 369–378.
  • Ristaino, J. B. (1991). Effect of solarization and Gliocladium virens on Sclerotia of Sclerotium rolfsii, soil microbiota, and the incidence of southern blight of tomato. Phytopathology, 81:1117–1124. https://doi.org/10.1094/phyto-81-1117
  • Ristaino, J. B. and Thomas, W. (1996). Agriculture, Methyl Bromide, and the Ozone Hole: Can We Fill the Gaps? Plant Disease, 81:964–977. https://doi.org/10.1094/PDIS.1997.81.9.964
  • Sarwar, M. and Kirkegaard, J. A. (1998). Biofumigation potential of brassicas: II. Effect of environment and ontogeny on glucosinolate production and implications for screening. Plant and Soil, 201(1): 91–101.
  • Scherer, H. W. (2001). Sulphur in crop production - Invited paper. European Journal of agronomy, 14:81–111. https://doi.org/10.1016/S1161-0301(00)00082-4
  • Sheikh, A. H. and Ghaffar, A. (1979). Relation of sclerotial inoculum density and soil moisture to infection of field crops by Macrophomina phaseolina. Pakistan Journal of Botany, 11:185–189.
  • Shetty, K. G., Subbarao, K. V., Huisman, O. C. and Hubbard, J. C. (2000). Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology, 90:305–310. https://doi.org/10.1094/PHYTO.2000.90.3.305
  • Short, G. E., Wyllie, T. D. and Bristow, P. R., (1980). Survival of Macrophomina phaseolina in soil and in residue of soybean. Phytopathology, 70:13–17.
  • Smolińska, U. (2000). Survival of Sclerotium cepivorum sclerotia and Fusarium oxysporum chlamydospores in soil amended with cruciferous residues. Journal of Phytopathology, 148:343–349. https://doi.org/10.1046/j.1439-0434.2000.00519.x
  • Songa, W. and Hillocks, R. J. (1996) Legume hosts of Macrophomina phaseolina in Kenya and effect of crop species on soil inoculum levels. Journal of Phytopathology, 144:387–391. https://doi.org/10.1111/j.1439-0434.1996.tb00311.x
  • Subbarao, K. V. and Hubbard, J. C. (1996). Interactive effects of broccoli residue and temperature on Verticillium dahliae microsclerotia in soil and on wilt in cauliflower. Phytopathology, 86:1303–1310. https://doi.org/10.1094/Phyto-86-1303
  • Subbarao, K. V., Kabir, Z., Martin, F. N. and Koike, S. T. (2007). Management of soilborne diseases in strawberry using vegetable rotations. Plant Disease, 91:964–972. https://doi.org/10.1094/PDIS-91-8-0964
  • Tardioli, S., Bànnè, E. and Santori, F. (1997). Species-specific selection on soil fungal population after olive mill waste-water treatment. Chemosphere, 34(11): 2329–2336. https://doi.org/10.1016/s0045-6535(97)00044-1
  • Turhan, A. and Özmen, N. (2021). Effects of Chemical and Organic Fertilizer Treatments on Yield and Quality Traits of Industrial Tomato, Tekirdağ Ziraat Fakültesi Dergisi, 18(2): 213 – 221. https://doi.org/10.33462/jotaf.741367
  • Vig, A. P, Rampal, G., Thind, T. S. and Arora, S. (2009). Bio-protective effects of glucosinolates - A review. LWT - Food Science and Technology, 42:1561–1572. https://doi.org/10.1016/j.lwt.2009.05.023
  • Vijayabharathi, R., Sathya, A. and Gopalakrishnan, S. (2015). Plant Growth-Promoting Microbes from Herbal Vermicompost. In: Varma DES (ed) Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants, Soil Biology, vol 42. Springer, Cham, pp 71–88. Springer, https://doi.org/10.1007/978-3-319-13401-7_4
  • Wanniarachchi, S. D. and Voroney, R. P. (1997). Phytotoxicity of canola residues: Release of water-soluble phytotoxins. Canadian Journal of Soil Science, 77:535–541. https://doi.org/10.4141/S94-083
  • Williams, J. S. and Cooper, R. M. (2004). The oldest fungicide and newest phytoalexin - A reappraisal of the fungitoxicity of elemental sulphur. Plant Pathology, 53:263–279. https://doi.org/10.1111/j.0032-0862.2004.01010.x
  • Yildiz, A., Benlioǧlu, S., Boz, Ö. and Benlioǧlu, K. (2010). Use of different plastics for soil solarization in strawberry growth and time-temperature relationships for the control of Macrophomina phaseolina and weeds. Phytoparasitica 38:463–473. https://doi.org/10.1007/s12600-010-0123-7
  • Yildiz, A., Ozyılmaz, Ü., Benlioglu , H. S. and Benlioglu,. K. (2007). Effect of soil solarization with amendments to soil-born fungal pathogens and yield in strawbeny production. The Journal of Turkish Phytopathology, 36:53–63.
  • Zenda, T., Liu, S., Dong, A. and Duan, H. (2021). Revisiting Sulphur—The Once neglected nutrient: it’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7): 626. http://dx.doi.org/10.3390/agriculture11070626
  • Zhang, D., Cheng, H., Hao, B. et al. (2021). Effect of fresh chicken manure as a non-chemical soil fumigant on soil-borne pathogens, plant growth and strawberry fruit profitability. Crop Protection,146:105653. https://doi.org/10.1016/J.CROPRO.2021.105653
  • Zveibil, A. and Freeman, S. (2005). First Report of Crown and Root Rot in Strawberry Caused by Macrophomina phaseolina in Israel. Plant Disease, 89:1014–1014. https://doi.org/10.1094/pd-89-1014c
  • Zveibil, A., Mor, N., Gnayem, N., Freeman, S. (2012). Survival, host-pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Disease, 96:265–272. https://doi.org/10.1094/PDIS-04-11-0299
There are 78 citations in total.

Details

Primary Language Turkish
Subjects Phytopathology
Journal Section Articles
Authors

Çiğdem Köroğlu 0000-0001-6458-0161

Ayhan Yıldız 0000-0001-9443-2362

Early Pub Date May 21, 2024
Publication Date May 27, 2024
Submission Date September 25, 2023
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 21 Issue: 3

Cite

APA Köroğlu, Ç., & Yıldız, A. (2024). Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi, 21(3), 732-747. https://doi.org/10.33462/jotaf.1362744
AMA Köroğlu Ç, Yıldız A. Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi. JOTAF. May 2024;21(3):732-747. doi:10.33462/jotaf.1362744
Chicago Köroğlu, Çiğdem, and Ayhan Yıldız. “Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine Ve Macrophomina Phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç Ve Kök Çürüklüğü Hastalığı Ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 21, no. 3 (May 2024): 732-47. https://doi.org/10.33462/jotaf.1362744.
EndNote Köroğlu Ç, Yıldız A (May 1, 2024) Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi. Tekirdağ Ziraat Fakültesi Dergisi 21 3 732–747.
IEEE Ç. Köroğlu and A. Yıldız, “Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi”, JOTAF, vol. 21, no. 3, pp. 732–747, 2024, doi: 10.33462/jotaf.1362744.
ISNAD Köroğlu, Çiğdem - Yıldız, Ayhan. “Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine Ve Macrophomina Phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç Ve Kök Çürüklüğü Hastalığı Ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi 21/3 (May 2024), 732-747. https://doi.org/10.33462/jotaf.1362744.
JAMA Köroğlu Ç, Yıldız A. Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi. JOTAF. 2024;21:732–747.
MLA Köroğlu, Çiğdem and Ayhan Yıldız. “Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine Ve Macrophomina Phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç Ve Kök Çürüklüğü Hastalığı Ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 21, no. 3, 2024, pp. 732-47, doi:10.33462/jotaf.1362744.
Vancouver Köroğlu Ç, Yıldız A. Bazı Organik Maddelerin Çilek Bitkisinin Gelişimine ve Macrophomina phaseolina (Tassi) Goid.’ nın Neden Olduğu Taç ve Kök Çürüklüğü Hastalığı ile Toprakta Mikrosklerot Sayısı Üzerine Etkisi. JOTAF. 2024;21(3):732-47.