Research Article
BibTex RIS Cite

Hydro/ Solvothermal Synthesis and Crystal Structure of New Ni(II) Coordination Polymer Containing Pamoic Acid and Ethylenediamine Mixed Ligands : {[Ni(µ-pam)(en)2]·H2O}n

Year 2017, , 869 - 876, 18.08.2017
https://doi.org/10.18596/jotcsa.296299

Abstract

The new coordination polymers arranged from
flexible pamoic acid, namely {[Ni(µ-pam)(en)2]·H2O}n
(1), (H2pam= pamoic acid, en=
ethylenediamine), have been
synthesized under hydro/ solvothermal conditions and characterized by elemental
analysis, simultaneous TG, DTA techniques, IR
spectroscopy, and X-ray crystallography. 
X-ray single crystal structure analysis of 1 shows that the Ni(II) ions
are bridged by pamoic acid ligands to generate 1dimensional (1D) coordination
polymer running parallel to the direction, with the Ni∙∙∙Ni separation is
14.057 Å. Adjacent 1D chains are connected by N-H···O and O-H···O hydrogen
bonds to establishing 3 dimensional (3D) supramolecular network.





An infinite 3D supramolecular
network in 1

References

  • 1. Batten SR, Champness NR, Chen X, Garcia-Martinez J, Kitawaga S, Öhrström L, O’Keeffe M, Suh MP and Reedijk J. Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 2013 July; 85(8): 1715–1724.
  • 2. Sun Y, Wang L, Amer WA, Yu H, Ji J, Huang L, Shan J, Tong R. Hydrogen Storage in Metal-Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials. 2013 March; 23(2): 270-285.
  • 3. Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński TJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas AH and Eddaoudi M. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015 Oct; 137 (41): 13308–13318.
  • 4. Arıcı M, Yeşilel OZ, Taş M, Demiral H. The effect of solvent molecule in pore for flexible porous coordination polymer upon gas adsorption and iodine encapsulation. Inorganic Chemistry. 2015 Dec; 54: 11283-11291.
  • 5. Horike S, Inubushi Y, Hori T, Fukushima T and Kitagawa S. A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6gas separation: equilibrium and kinetic studies. Royal Society of Chemistry. 2011 Oct; 3(1): 116-120.
  • 6. Bae Y, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT and Mirkin CA. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. ChemComm. 2010 Jan; 46: 3478–3480.
  • 7. Fujita M, Kwon YJ, Washizu S, Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Chem. Soc. 1994 Feb; 116 (3): 1151–1152.
  • 8. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ and Kim K. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature. 2000 Apr; 404: 982-986.
  • 9. Horike S, Dinca M, Tamaki K, Long J R. Size-selective Lewis acid catalysis in a micro‐porous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 2008 May;130:5854–5855.
  • 10. Tang Y, Xiong J, Tan Y, Wang Y, Deng Y, Xu O and Wen H. Solvothermal syntheses, crystal structures and photoluminescent properties of four coordination polymers with pamoic acid and pyridine mixed ligands. Inorganica Chimica Acta. 2014 Jan; 410: 82–87.
  • 11. Shi X, Li M, He X, Liu H, Shao M. Crystal structures and properties of four coordination polymers constructed from flexible pamoic acid. Polyhedron. 2010 Jun; 29(9): 2075–2080.
  • 12. Cao T, Peng Y, Liu T, Wang S, Dou J, Li Y, Zhou C, Li D and Bai J. Assembly of a series of d10 coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties. Cryst. Eng. Comm. 2014 Sep; 16: 10658-10673.
  • 13. Bu X, Wei Z, Ren S. Synthesis, structures and magnetic properties of two isomeric coordination polymers constructed from pamoic acid and 1,2-di(4-pyridyl)ethane. Journal of Coordination Chemistry. 2015 Nov; 68(3), 471-478.
  • 14. Wang S, Yun R, Peng Y, Zhang O, Lu J, Dou J, Bai J, Li D, and Wang D. A Series of Four-Connected Entangled Metal–Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supramolecular Isomerism. Cryst. Growth Des. 2012 Nov; 12 (1): 79–92.
Year 2017, , 869 - 876, 18.08.2017
https://doi.org/10.18596/jotcsa.296299

Abstract

References

  • 1. Batten SR, Champness NR, Chen X, Garcia-Martinez J, Kitawaga S, Öhrström L, O’Keeffe M, Suh MP and Reedijk J. Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 2013 July; 85(8): 1715–1724.
  • 2. Sun Y, Wang L, Amer WA, Yu H, Ji J, Huang L, Shan J, Tong R. Hydrogen Storage in Metal-Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials. 2013 March; 23(2): 270-285.
  • 3. Alezi D, Belmabkhout Y, Suyetin M, Bhatt PM, Weseliński TJ, Solovyeva V, Adil K, Spanopoulos I, Trikalitis PN, Emwas AH and Eddaoudi M. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015 Oct; 137 (41): 13308–13318.
  • 4. Arıcı M, Yeşilel OZ, Taş M, Demiral H. The effect of solvent molecule in pore for flexible porous coordination polymer upon gas adsorption and iodine encapsulation. Inorganic Chemistry. 2015 Dec; 54: 11283-11291.
  • 5. Horike S, Inubushi Y, Hori T, Fukushima T and Kitagawa S. A solid solution approach to 2D coordination polymers for CH4/CO2 and CH4/C2H6gas separation: equilibrium and kinetic studies. Royal Society of Chemistry. 2011 Oct; 3(1): 116-120.
  • 6. Bae Y, Spokoyny AM, Farha OK, Snurr RQ, Hupp JT and Mirkin CA. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. ChemComm. 2010 Jan; 46: 3478–3480.
  • 7. Fujita M, Kwon YJ, Washizu S, Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J. Am. Chem. Soc. 1994 Feb; 116 (3): 1151–1152.
  • 8. Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ and Kim K. A homochiral metal–organic porous material for enantioselective separation and catalysis. Nature. 2000 Apr; 404: 982-986.
  • 9. Horike S, Dinca M, Tamaki K, Long J R. Size-selective Lewis acid catalysis in a micro‐porous metal-organic framework with exposed Mn2+ coordination sites. J. Am. Chem. Soc. 2008 May;130:5854–5855.
  • 10. Tang Y, Xiong J, Tan Y, Wang Y, Deng Y, Xu O and Wen H. Solvothermal syntheses, crystal structures and photoluminescent properties of four coordination polymers with pamoic acid and pyridine mixed ligands. Inorganica Chimica Acta. 2014 Jan; 410: 82–87.
  • 11. Shi X, Li M, He X, Liu H, Shao M. Crystal structures and properties of four coordination polymers constructed from flexible pamoic acid. Polyhedron. 2010 Jun; 29(9): 2075–2080.
  • 12. Cao T, Peng Y, Liu T, Wang S, Dou J, Li Y, Zhou C, Li D and Bai J. Assembly of a series of d10 coordination polymers of pamoic acid through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties. Cryst. Eng. Comm. 2014 Sep; 16: 10658-10673.
  • 13. Bu X, Wei Z, Ren S. Synthesis, structures and magnetic properties of two isomeric coordination polymers constructed from pamoic acid and 1,2-di(4-pyridyl)ethane. Journal of Coordination Chemistry. 2015 Nov; 68(3), 471-478.
  • 14. Wang S, Yun R, Peng Y, Zhang O, Lu J, Dou J, Bai J, Li D, and Wang D. A Series of Four-Connected Entangled Metal–Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supramolecular Isomerism. Cryst. Growth Des. 2012 Nov; 12 (1): 79–92.
There are 14 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Yasemin Tümer

Onur Şahin This is me

Publication Date August 18, 2017
Submission Date March 4, 2017
Acceptance Date August 16, 2017
Published in Issue Year 2017

Cite

Vancouver Tümer Y, Şahin O. Hydro/ Solvothermal Synthesis and Crystal Structure of New Ni(II) Coordination Polymer Containing Pamoic Acid and Ethylenediamine Mixed Ligands : {[Ni(µ-pam)(en)2]·H2O}n. JOTCSA. 2017;4(3):869-76.