Boronic acid functionalized silica microparticles for isolation of flavonoids from Hypericum perforatum
Year 2018,
, 41 - 60, 01.09.2017
Onur Cetinkaya
,
Hüseyin Çiçek
,
Şeyda Kıvrak
Gülsen Çayan
Abstract
We have selectively separated cis- and/or vicinal-diol-containing
flavonoids from Hypericum perfaratum (HP)
by adsorption/desorption using aminophenylboronic acid (APBA) functionalized
uniform (1.6 μm) silica microparticles (BASPs) synthesized via the Stöber method. Silica particles were alkylated by its
terminal –OH with 3-aminopropyl trimethoxysilane (APTS), glutaraldehyde (GA)
and APBA. The results from model adsorption studies indicated that these microparticles
selectively adsorbed quercetin and rutin but partially apigenin. The
antioxidant and antiradical activities of the desorption solution were slightly
higher than that of the post-adsorption solution. These results indicated that the
BASP selectively adsorbed the cis- and/or vicinal antioxidant and antiradical flavonoids.
References
- [1] Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006; 1112:31-63.
- [2] Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000; 52:673–751.
- [3] Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002; 96(2-3):67–202.
- [4] Georgetti SR, Casagrande R, Di Mambro VM, Azzolini AE, Maria J. Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method. Am. Assoc. Pharm. Sci. J. 2003; 5(2):1-4.
- [5] Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004;7:829-837.
- [6] Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERB 1. Neoplasia 20068(11):896–904.
- [7] Bayard V, Chamorro F, Motta J, Hollenberg NK. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int. J. Med. Sci. 2007;4(1):53–58.
- [8] He DH, Otsuka H, Hirata E, Shinzato T, Bando M, Takeda Y. Tricalysiosides A-G: rearranged ent-kauranoid glycosides from the leaves of tricalysia Dubia. J. Nat. Prod. 2002;65:685–688.
- [9] Aehle E, Grandic SR, Ralainirina R, Rosset SB, Mesnard F, Prouillet C, Maziere JC, Fliniaux MA. Development and evaluation of an enriched natural antioxidant preparation obtained from aqueous spinach (spinacia oleracea) extracts by an adsorption procedure. Food Chem. 2004;86:579-585.
- [10] Huang J, Liu Y, Wang X. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J. Hazard Mater. 2008;160:382–387.
- [11] Singh SV, Gupta AK, Jain RK. Adsorption of naringin on nonionic (neutral) macroporus adsorbent resin from its aqueous solutions. J. Food Eng. 2008;86:259–271.
- [12] Geng X, Ren P, Pi G, Shi R, Yuan Z, Wang C. High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. J. Chromatogr. A 2009;1216:8331–8338.
- [13] Li J, Chase HA. Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from ginkgo biloba l. J. Chromatogr. A 2009;1216:8730–8740.
- [14] Spacil Z, Novakova L, Solich P. Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta 2008;76:189–199.
- [15] Çetinkaya O, Duru ME, Çiçek H. Synthese and characterization of boronic acid functionalized macroporous uniform poly (4-chloromethylstyrene-co-divinylbenzene) particles and its use in the isolation of antioxidant compounds from plant extracts. J. Chromatogr. B 2012;909:51– 60.
- [16] Kamiya H, Mitsui M, Takano H, Miyazawa S. Influence of particle diameter on surface silanol structure, hydration forces, and aggregation behavior of alkoxide-derived silica particles. J. Am. Ceram. Soc. 2000;83(2):287–293.
- [17] Grün M, Lauer I, Unger KK. The Synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997;9:254–257.
- [18] Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–712.
- [19] Qi L, Ma J, Cheng H, Zhao Z. Micrometer-sized mesoporous silica spheres grown under static conditions. Chem. Mater. 1998;10:1623–1626.
- [20] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968;26:62–68.
- [21] Unger KK, Kumar D, Grün M, Büchel G, Lüdtke S, Adam T, Schumacher, K, Renker S. Synthesis of spherical porous silicas in the micron and submicron size range : challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. J. Chromatogr. A 2000;892:47–55.
- [22] Büchel G, Grün M, Unger KK, Matsumoto A, Kazuo T. Tailored syntheses of nanostructured silicas: control of particle morphology particle size and pore size. Supramolecular Science 1998;5(7):253-259.
- [23] Möller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sized mesoporous silica. Adv. Funct. Mater. 2007;17:605-612.
- [24] Guerrero VV, Shantz DF. Amine-functionalized ordered mesoporous silica transesterification catalysts. Ind. Eng. Chem. Res. 2009;48:10375–10380.
- [25] Ramkumar A, Lal R. Silica nanoparticle tags for capacitive affinity sensors. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005;1:266-269.
- [26] Kecht J, Bein T. Microporous and mesoporous materials oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment. Microporous Mesoporous Mater. 2008;116:123–130.
- [27] Koopal LK, Yang Y, Minnaard AJ, Theunissen PLM, Riemsdijk WHV. Chemical immobilisation of humic acid on silica. Colloid. Surf. A 1998;141:385–395.
- [28] Park SW, Lee J, Hong SI, Kim SW. Enhancement of stability of GL-7-ACA acylase immobilized on silica gel modified by epoxide silanization. Process. Biochem. 2003;39:359-366.
- [29] Senel S. Boronic acid carrying (2-hydroxyethylmethacrylate)-based membranes for isolation of RNA. Colloid. Surf. A 2003;219:17-23.
- [30] Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina J. Ethnopharmacol. 2000;71(1–2):109–114.
- [31] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;26:1199–1200.
- [32] İlhami G, Oktay M, Kireçci E, Küfrevioglu Öİ. Screening of antioxidant and antimicrobial activities of anise (pimpinella anisum L.) seed extracts. Food Chem. 2003;83:371-382.
- [33] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure&Appl. 1985;57(4):603-619.
- [34] Huck CW, Buchmeiser MR, Bonn GK. Fast analysis of flavonoids in plant extracts by liquid chromatography-ultraviolet absorbance detection on poly(carboxylic acid)- coated silica and electrospray ionization tandem mass spectrometric detection. J. Chromatogr. A 2001;943:33–38.
- [35] Weinstock BA, Yang H, Griffiths PR. Determination of the adsorption rates of aldehydes on bare and aminopropylsilyl-modified silica gels by polynomial fitting of ultra-rapid-scanning FT-IR data. Vib. Spectrosc. 2004;35:145–152.
- [36] Colthup NB. Spectra-structure correlations in the infra-red region. J. Optical Am. 1950;40:397-400.
- [37] Çiçek H. Nucleotide isolation by boronic acid functionalized hydrogel beads. J Bioact Compat Polym 2005;20:245-257.
- [38] Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H. Flavonoids from hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med. 2000;66:3–6.
- [39] Barnes J, Anderson LA, Phillipson JD. St John’s Wort (hypericum perforatum l.): a review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001;53:583–600.
- [40] Flausino OA, Zangrossi H, Salgado JV, Viana MB. Effects of acute and chronic treatment with hypericum perforatum l. (li 160) on different anxiety-related responses in rats. Pharmacol. Biochem. Be. 2002;71:251–257.
- [41] Silva BA, Ferreres F, Malva JO, Dias ACP. Phytochemical and antioxidant characterization of hypericum perforatum alcoholic extracts. Food Chem. 2005;90:157–167.
Year 2018,
, 41 - 60, 01.09.2017
Onur Cetinkaya
,
Hüseyin Çiçek
,
Şeyda Kıvrak
Gülsen Çayan
References
- [1] Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006; 1112:31-63.
- [2] Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000; 52:673–751.
- [3] Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002; 96(2-3):67–202.
- [4] Georgetti SR, Casagrande R, Di Mambro VM, Azzolini AE, Maria J. Evaluation of the antioxidant activity of different flavonoids by the chemiluminescence method. Am. Assoc. Pharm. Sci. J. 2003; 5(2):1-4.
- [5] Walle T. Absorption and metabolism of flavonoids. Free Radic. Biol. Med. 2004;7:829-837.
- [6] Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERB 1. Neoplasia 20068(11):896–904.
- [7] Bayard V, Chamorro F, Motta J, Hollenberg NK. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int. J. Med. Sci. 2007;4(1):53–58.
- [8] He DH, Otsuka H, Hirata E, Shinzato T, Bando M, Takeda Y. Tricalysiosides A-G: rearranged ent-kauranoid glycosides from the leaves of tricalysia Dubia. J. Nat. Prod. 2002;65:685–688.
- [9] Aehle E, Grandic SR, Ralainirina R, Rosset SB, Mesnard F, Prouillet C, Maziere JC, Fliniaux MA. Development and evaluation of an enriched natural antioxidant preparation obtained from aqueous spinach (spinacia oleracea) extracts by an adsorption procedure. Food Chem. 2004;86:579-585.
- [10] Huang J, Liu Y, Wang X. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J. Hazard Mater. 2008;160:382–387.
- [11] Singh SV, Gupta AK, Jain RK. Adsorption of naringin on nonionic (neutral) macroporus adsorbent resin from its aqueous solutions. J. Food Eng. 2008;86:259–271.
- [12] Geng X, Ren P, Pi G, Shi R, Yuan Z, Wang C. High selective purification of flavonoids from natural plants based on polymeric adsorbent with hydrogen-bonding interaction. J. Chromatogr. A 2009;1216:8331–8338.
- [13] Li J, Chase HA. Characterization and evaluation of a macroporous adsorbent for possible use in the expanded bed adsorption of flavonoids from ginkgo biloba l. J. Chromatogr. A 2009;1216:8730–8740.
- [14] Spacil Z, Novakova L, Solich P. Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta 2008;76:189–199.
- [15] Çetinkaya O, Duru ME, Çiçek H. Synthese and characterization of boronic acid functionalized macroporous uniform poly (4-chloromethylstyrene-co-divinylbenzene) particles and its use in the isolation of antioxidant compounds from plant extracts. J. Chromatogr. B 2012;909:51– 60.
- [16] Kamiya H, Mitsui M, Takano H, Miyazawa S. Influence of particle diameter on surface silanol structure, hydration forces, and aggregation behavior of alkoxide-derived silica particles. J. Am. Ceram. Soc. 2000;83(2):287–293.
- [17] Grün M, Lauer I, Unger KK. The Synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv. Mater. 1997;9:254–257.
- [18] Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–712.
- [19] Qi L, Ma J, Cheng H, Zhao Z. Micrometer-sized mesoporous silica spheres grown under static conditions. Chem. Mater. 1998;10:1623–1626.
- [20] Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interface Sci. 1968;26:62–68.
- [21] Unger KK, Kumar D, Grün M, Büchel G, Lüdtke S, Adam T, Schumacher, K, Renker S. Synthesis of spherical porous silicas in the micron and submicron size range : challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations. J. Chromatogr. A 2000;892:47–55.
- [22] Büchel G, Grün M, Unger KK, Matsumoto A, Kazuo T. Tailored syntheses of nanostructured silicas: control of particle morphology particle size and pore size. Supramolecular Science 1998;5(7):253-259.
- [23] Möller K, Kobler J, Bein T. Colloidal suspensions of nanometer-sized mesoporous silica. Adv. Funct. Mater. 2007;17:605-612.
- [24] Guerrero VV, Shantz DF. Amine-functionalized ordered mesoporous silica transesterification catalysts. Ind. Eng. Chem. Res. 2009;48:10375–10380.
- [25] Ramkumar A, Lal R. Silica nanoparticle tags for capacitive affinity sensors. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005;1:266-269.
- [26] Kecht J, Bein T. Microporous and mesoporous materials oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment. Microporous Mesoporous Mater. 2008;116:123–130.
- [27] Koopal LK, Yang Y, Minnaard AJ, Theunissen PLM, Riemsdijk WHV. Chemical immobilisation of humic acid on silica. Colloid. Surf. A 1998;141:385–395.
- [28] Park SW, Lee J, Hong SI, Kim SW. Enhancement of stability of GL-7-ACA acylase immobilized on silica gel modified by epoxide silanization. Process. Biochem. 2003;39:359-366.
- [29] Senel S. Boronic acid carrying (2-hydroxyethylmethacrylate)-based membranes for isolation of RNA. Colloid. Surf. A 2003;219:17-23.
- [30] Moreno MIN, Isla MI, Sampietro AR, Vattuone MA. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina J. Ethnopharmacol. 2000;71(1–2):109–114.
- [31] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;26:1199–1200.
- [32] İlhami G, Oktay M, Kireçci E, Küfrevioglu Öİ. Screening of antioxidant and antimicrobial activities of anise (pimpinella anisum L.) seed extracts. Food Chem. 2003;83:371-382.
- [33] Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure&Appl. 1985;57(4):603-619.
- [34] Huck CW, Buchmeiser MR, Bonn GK. Fast analysis of flavonoids in plant extracts by liquid chromatography-ultraviolet absorbance detection on poly(carboxylic acid)- coated silica and electrospray ionization tandem mass spectrometric detection. J. Chromatogr. A 2001;943:33–38.
- [35] Weinstock BA, Yang H, Griffiths PR. Determination of the adsorption rates of aldehydes on bare and aminopropylsilyl-modified silica gels by polynomial fitting of ultra-rapid-scanning FT-IR data. Vib. Spectrosc. 2004;35:145–152.
- [36] Colthup NB. Spectra-structure correlations in the infra-red region. J. Optical Am. 1950;40:397-400.
- [37] Çiçek H. Nucleotide isolation by boronic acid functionalized hydrogel beads. J Bioact Compat Polym 2005;20:245-257.
- [38] Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H. Flavonoids from hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med. 2000;66:3–6.
- [39] Barnes J, Anderson LA, Phillipson JD. St John’s Wort (hypericum perforatum l.): a review of its chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2001;53:583–600.
- [40] Flausino OA, Zangrossi H, Salgado JV, Viana MB. Effects of acute and chronic treatment with hypericum perforatum l. (li 160) on different anxiety-related responses in rats. Pharmacol. Biochem. Be. 2002;71:251–257.
- [41] Silva BA, Ferreres F, Malva JO, Dias ACP. Phytochemical and antioxidant characterization of hypericum perforatum alcoholic extracts. Food Chem. 2005;90:157–167.