Research Article
BibTex RIS Cite

ALLYLATION OF ARYL GRIGNARD REAGENTS IN THE PRESENCE OF TRANSITION METAL CATALYSIS AND ORGANIC CATALYSIS

Year 2017, , 877 - 888, 18.08.2017
https://doi.org/10.18596/jotcsa.318333

Abstract

The allylation
yield and regioselectivity of phenyl Grignard reagent in THF was investigated
in the presence of complexed transition metals and also uncomplexed or
complexed transition metal salts. Additionally, the effect of Lewis acids and
Lewis baseson the yield and the regioselectivity of the allylic arylation was
also observed. Neither P-containing ligands for transition metal complexes, nor
transition metal salts did make a difference on the yield and
a:g product ratio
and gave the is
a-product as the main product. However, donor cosolvents resulted in
decrease in the yield and change of the regioselectivity.

References

  • REFERENCES 1. (a) Knochel P., “Metal catalyzed cross coupling Reactions”, Diederich F. and Stang P.J. (Ed.), Wiley-VCH, Weinheim, 1998, Chap. 9. (b) Lipshutz B.H., Organocopper Chemistry in Organometallics in Synthesis; Lipshutz B. H. (Ed.); Wiley, Chichester, 2014. (c) Negishi E. and Liu F., Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi E. (Ed.), Wiley, New York, 2002, Chap. III.2.9. and Chap. III.2.10. (d) Meijere A. and Diederich F., Metal Catalyzed Cross Coupling Reactions; Wiley, New York, 2004. (e) Takahashi T. and Kanno K., Modern Organonickel Chemistry, Tamaru Y. (Ed.), Wiley-VCH, Weinheim, 2005, Chap. 2.3. (f) Shintani R. and Hayashi T., Modern Organonickel Chemistry, Tamaru Y. (Ed.), Wiley-VCH, Weinheim, 2005, Chap. 9.2. (g) Jana R., Pathak T. P. and Sigman M. S., Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 2011,111, 1417-92.
  • 2. Kar A., Argade N. P., A Concise Account of Recent SN2′ Grignard Coupling Reactions in Organic Synthesis, Synthesis, 2005, 18, 2995–3022.
  • 3. Lu Z., Ma S., Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed., 2008, 47, 258–297.
  • 4. (a) Silverman G. A., Rakita P. E., “Handbook of Grignard Reagents”; Marcel Dekker: New York, 1996 (b) Lipshutz B. H., Sengupta S., “Org. React.” (N.Y.) 1992, 41, 135. (c) van der Molen N. C., Tiemersma-Wegman T. D., Fañanás-Mastral M., and Feringa B. L., Regio- and Enantioselective Copper-Catalyzed Allylic Alkylation of Ortho-Substituted Cinnamyl Bromides with Grignard Reagents. J. Org. Chem., 2015, 80, 4981-84 (d) Langlois J.B., Alexakis A., Copper catalyzed enantioselective allylic substitution, Top. Organomet. Chem.” 2012, 38, 235-68. (e) Basle O., Denicourt-Nowicki A., Crevisy C., Mauduit M., In Copper-Catalyzed Asymmetric Synthesis, Alexakis A., Krause, N., Woodward, S., (Eds.) Wiley-VCH: Weinheim, 2014; Chapter 4. (f) Huang Y., Fananas-Mastral M., Minnaard A. J., Feringa B. L., A novel catalytic asymmetric route towards skipped dienes with a methyl-substituted central stereogenic carbon, Chem. Commun., 2013, 49, 3309-11.
  • 5. (a) Krause N., Ed.; “Modern Organocopper Chemistry”, Wiley-VCH: Weinheim, 2001. (b) Giannerini M., Fañanás-Mastral M., and Feringa B. L., Z-Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents, J. Am. Chem. Soc., 2012, 134 (9), 4108–4111. (c) Alexakis A., Malan C., Louise L., Tisso-Croset K., Polat D., Falciola C. A., The Copper-Catalyzed Asymmetric Allylic Substitution, Chimia Int. J. Chem., 2006, 60, 124–130. (d) Tominoga S., Oi Y., Kato T., An K. D., Okamoto S., γ-Selective allylic substitution reaction with Grignard reagents catalyzed by copper N-heterocyclic carbene complexes and its application to enantioselective synthesis, Tetrahedron Lett., 2004, 45, 5585–5588. (e) Tissot-Croset K., Polat D., Alexakis A., A Highly Effective Phosphoramidite Ligand for Asymmetric Allylic Substitution, Angew. Chem., Int. Ed., 2004, 43, 2426–2428. (f) Falciola C. A., Alexakis A., Copper-Catalyzed Asymmetric Allylic Alkylation, Eur. J. Org. Chem., 2008, 3765-80. (g) Harutyunyan S., Hartog T., Geurts K., Minnaard A. J., Feringa B. L., Catalytic Asymmetric Conjugate Addition and Allylic Alkylation with Grignard Reagents, Chem. Rev., 2008, 108, 2824-52. (h) Alexakis A., Backväll J. E., Krause N., Pàmies O., Diéguez M., Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions, Chem. Rev., 2008, 108, 2796-2823.
  • 6. Falciola C. A., Tissot-Croset K., Alexakis A., β-Disubstituted Allylic Chlorides: Substrates for the Cu-Catalyzed Asymmetric SN2′ Reaction, Angew. Chem., Int. Ed., 2006, 45, 5995-5998.
  • 7. Erdik E. and Koçoğlu M., Copper catalyzed magnesium-Barbier reaction for -selective alkyl–allyl coupling, Tetrahedron Letters, 2007, 48, 4211–4214.
  • 8. Kalkan M., Erdik E. and Ömür Pekel Ö. Revisiting Allylic Coupling of Grignard Reagents. Nano Copper Catalyzed One-Pot -Selective Aryl-Allyl Coupling, Organic Preparations and Procedures International, Accepted.
  • 9. Kiyotsuka Y., Acharya H. P., Katayama Y., Hyodo T. and Kobayashi Y., Picolinoxy Group, a New Leaving Group for anti SN2′ Selective Allylic Substitution with Aryl Anions Based on Grignard Reagents, Org. Lett., 2008, 10(9), 1719-1722.
  • 10. Kiyotsuka Y., Katayama Y., Acharya H.P., Hyodo T. and Kobayashi Y., New General Method for Regio- and Stereoselective Allylic Substitution with Aryl and Alkenyl Coppers Derived from Grignard Reagents, J. Org Chem. 2009, 74, 1939-1951.
  • 11. Feng C. and Kobayashi Y., Allylic Substitution for Construction of a Chiral Quaternary Carbon Possessing an Aryl Group, J. Org. Chem. 2013, 78, 3755-3766.
  • 12. Chao Feng and Yuichi Kobayashi, Installation of a Chiral Side Chain to a 2-Alkylidene-1-cycloalkan-1-ol Unit by Using Allylic Substitution, Eur. J. Org. Chem. 2013, 6666-6676.
  • 13. Didiuk M.T., Morken J.P. and Hoveyda A.H., Phosphıne-Dırected Stereo-Regioselective Ni-Catalyzed Reactions of Grignard Reagents with Allylic Ethers, Tetrahedron,1998, 54, 1117-1130.
  • 14. Hayashi T., Konishi M., Yokota K. and Kumada M., Regio- and stereo-chemistry in allylation of aryl Grignard reagents catalyzed by phosphine-nickel and -palladium complexes, J. Organomet. Chem., 1985, 285, 359-373.
  • 15. Takuma Y. and Imaki N. Novel phosphine-palladium complex-catalysed regioselective allylation of a Grignard reagent, Journal of Molecular Catalysis, 1993, 79, 1-5.
  • 16. Volla C.M. R., Dubbaka S.R., Vogel P., Palladium-catalyzed desulfinylative C–C allylation of Grignard reagents and enolates using allylsulfonyl chlorides and esters, Tetrahedron, 2009, 65, 504–511.
  • 17. Yasui H., Mizutani K., Yorimitsu H. and Oshima K., Cobalt- and rhodium-catalyzed cross-coupling reaction of allylic ethers and halides with organometallic reagents, Tetrahedron, 2006, 62, 1410–1415.
  • 18. Mizutani K., Yorimitsu H., and Oshima K., Cobalt-Catalyzed Allylic Substitution Reaction of Allylic Ethers with Phenyl and Trimethylsilylmethyl Grignard Reagents, Chemistry Letters, 2004,33, 832-833.
  • 19. Qi L., Ma E., Jia F., Li Z., Iron-catalyzed allylic substitution reactions of allylic ethers with Grignard reagents, Tetrahedron Letters, 2016, 57, 2211–2214.
  • 20. Leonard J., Lygo B., Procter G., Advanced Practical Organic Chemistry, Blackie, London, 1995.
  • 21. Perrin D.D., Armarego W.L.F., Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1988.
  • 22. Barber H.J., Cuprous cyanide, J. Chem. Soc. 1943, 1, 79-80.
  • 23. Watson J.H., Eastham J.F., Colored indicators for simple direct titration of magnesium and lithium reagents, J. Organomet. Chem. 1967, 9, 165-168.
  • 24. Kalkan M. and Erdik E., Reactivity of mixed organozinc and mixed organocopper reagents: 14. Phosphine-nickel catalyzed aryl-allyl coupling of (n-butyl)(aryl)zincs. Ligand and substrate control on the group selectivity and regioselectivity, Journal of Organometallic Chemistry, 2016, 818, 28-36.
Year 2017, , 877 - 888, 18.08.2017
https://doi.org/10.18596/jotcsa.318333

Abstract

References

  • REFERENCES 1. (a) Knochel P., “Metal catalyzed cross coupling Reactions”, Diederich F. and Stang P.J. (Ed.), Wiley-VCH, Weinheim, 1998, Chap. 9. (b) Lipshutz B.H., Organocopper Chemistry in Organometallics in Synthesis; Lipshutz B. H. (Ed.); Wiley, Chichester, 2014. (c) Negishi E. and Liu F., Handbook of Organopalladium Chemistry for Organic Synthesis, Negishi E. (Ed.), Wiley, New York, 2002, Chap. III.2.9. and Chap. III.2.10. (d) Meijere A. and Diederich F., Metal Catalyzed Cross Coupling Reactions; Wiley, New York, 2004. (e) Takahashi T. and Kanno K., Modern Organonickel Chemistry, Tamaru Y. (Ed.), Wiley-VCH, Weinheim, 2005, Chap. 2.3. (f) Shintani R. and Hayashi T., Modern Organonickel Chemistry, Tamaru Y. (Ed.), Wiley-VCH, Weinheim, 2005, Chap. 9.2. (g) Jana R., Pathak T. P. and Sigman M. S., Advances in transition metal (Pd, Ni, Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners. Chem. Rev. 2011,111, 1417-92.
  • 2. Kar A., Argade N. P., A Concise Account of Recent SN2′ Grignard Coupling Reactions in Organic Synthesis, Synthesis, 2005, 18, 2995–3022.
  • 3. Lu Z., Ma S., Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Ed., 2008, 47, 258–297.
  • 4. (a) Silverman G. A., Rakita P. E., “Handbook of Grignard Reagents”; Marcel Dekker: New York, 1996 (b) Lipshutz B. H., Sengupta S., “Org. React.” (N.Y.) 1992, 41, 135. (c) van der Molen N. C., Tiemersma-Wegman T. D., Fañanás-Mastral M., and Feringa B. L., Regio- and Enantioselective Copper-Catalyzed Allylic Alkylation of Ortho-Substituted Cinnamyl Bromides with Grignard Reagents. J. Org. Chem., 2015, 80, 4981-84 (d) Langlois J.B., Alexakis A., Copper catalyzed enantioselective allylic substitution, Top. Organomet. Chem.” 2012, 38, 235-68. (e) Basle O., Denicourt-Nowicki A., Crevisy C., Mauduit M., In Copper-Catalyzed Asymmetric Synthesis, Alexakis A., Krause, N., Woodward, S., (Eds.) Wiley-VCH: Weinheim, 2014; Chapter 4. (f) Huang Y., Fananas-Mastral M., Minnaard A. J., Feringa B. L., A novel catalytic asymmetric route towards skipped dienes with a methyl-substituted central stereogenic carbon, Chem. Commun., 2013, 49, 3309-11.
  • 5. (a) Krause N., Ed.; “Modern Organocopper Chemistry”, Wiley-VCH: Weinheim, 2001. (b) Giannerini M., Fañanás-Mastral M., and Feringa B. L., Z-Selective Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents, J. Am. Chem. Soc., 2012, 134 (9), 4108–4111. (c) Alexakis A., Malan C., Louise L., Tisso-Croset K., Polat D., Falciola C. A., The Copper-Catalyzed Asymmetric Allylic Substitution, Chimia Int. J. Chem., 2006, 60, 124–130. (d) Tominoga S., Oi Y., Kato T., An K. D., Okamoto S., γ-Selective allylic substitution reaction with Grignard reagents catalyzed by copper N-heterocyclic carbene complexes and its application to enantioselective synthesis, Tetrahedron Lett., 2004, 45, 5585–5588. (e) Tissot-Croset K., Polat D., Alexakis A., A Highly Effective Phosphoramidite Ligand for Asymmetric Allylic Substitution, Angew. Chem., Int. Ed., 2004, 43, 2426–2428. (f) Falciola C. A., Alexakis A., Copper-Catalyzed Asymmetric Allylic Alkylation, Eur. J. Org. Chem., 2008, 3765-80. (g) Harutyunyan S., Hartog T., Geurts K., Minnaard A. J., Feringa B. L., Catalytic Asymmetric Conjugate Addition and Allylic Alkylation with Grignard Reagents, Chem. Rev., 2008, 108, 2824-52. (h) Alexakis A., Backväll J. E., Krause N., Pàmies O., Diéguez M., Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions, Chem. Rev., 2008, 108, 2796-2823.
  • 6. Falciola C. A., Tissot-Croset K., Alexakis A., β-Disubstituted Allylic Chlorides: Substrates for the Cu-Catalyzed Asymmetric SN2′ Reaction, Angew. Chem., Int. Ed., 2006, 45, 5995-5998.
  • 7. Erdik E. and Koçoğlu M., Copper catalyzed magnesium-Barbier reaction for -selective alkyl–allyl coupling, Tetrahedron Letters, 2007, 48, 4211–4214.
  • 8. Kalkan M., Erdik E. and Ömür Pekel Ö. Revisiting Allylic Coupling of Grignard Reagents. Nano Copper Catalyzed One-Pot -Selective Aryl-Allyl Coupling, Organic Preparations and Procedures International, Accepted.
  • 9. Kiyotsuka Y., Acharya H. P., Katayama Y., Hyodo T. and Kobayashi Y., Picolinoxy Group, a New Leaving Group for anti SN2′ Selective Allylic Substitution with Aryl Anions Based on Grignard Reagents, Org. Lett., 2008, 10(9), 1719-1722.
  • 10. Kiyotsuka Y., Katayama Y., Acharya H.P., Hyodo T. and Kobayashi Y., New General Method for Regio- and Stereoselective Allylic Substitution with Aryl and Alkenyl Coppers Derived from Grignard Reagents, J. Org Chem. 2009, 74, 1939-1951.
  • 11. Feng C. and Kobayashi Y., Allylic Substitution for Construction of a Chiral Quaternary Carbon Possessing an Aryl Group, J. Org. Chem. 2013, 78, 3755-3766.
  • 12. Chao Feng and Yuichi Kobayashi, Installation of a Chiral Side Chain to a 2-Alkylidene-1-cycloalkan-1-ol Unit by Using Allylic Substitution, Eur. J. Org. Chem. 2013, 6666-6676.
  • 13. Didiuk M.T., Morken J.P. and Hoveyda A.H., Phosphıne-Dırected Stereo-Regioselective Ni-Catalyzed Reactions of Grignard Reagents with Allylic Ethers, Tetrahedron,1998, 54, 1117-1130.
  • 14. Hayashi T., Konishi M., Yokota K. and Kumada M., Regio- and stereo-chemistry in allylation of aryl Grignard reagents catalyzed by phosphine-nickel and -palladium complexes, J. Organomet. Chem., 1985, 285, 359-373.
  • 15. Takuma Y. and Imaki N. Novel phosphine-palladium complex-catalysed regioselective allylation of a Grignard reagent, Journal of Molecular Catalysis, 1993, 79, 1-5.
  • 16. Volla C.M. R., Dubbaka S.R., Vogel P., Palladium-catalyzed desulfinylative C–C allylation of Grignard reagents and enolates using allylsulfonyl chlorides and esters, Tetrahedron, 2009, 65, 504–511.
  • 17. Yasui H., Mizutani K., Yorimitsu H. and Oshima K., Cobalt- and rhodium-catalyzed cross-coupling reaction of allylic ethers and halides with organometallic reagents, Tetrahedron, 2006, 62, 1410–1415.
  • 18. Mizutani K., Yorimitsu H., and Oshima K., Cobalt-Catalyzed Allylic Substitution Reaction of Allylic Ethers with Phenyl and Trimethylsilylmethyl Grignard Reagents, Chemistry Letters, 2004,33, 832-833.
  • 19. Qi L., Ma E., Jia F., Li Z., Iron-catalyzed allylic substitution reactions of allylic ethers with Grignard reagents, Tetrahedron Letters, 2016, 57, 2211–2214.
  • 20. Leonard J., Lygo B., Procter G., Advanced Practical Organic Chemistry, Blackie, London, 1995.
  • 21. Perrin D.D., Armarego W.L.F., Purification of Laboratory Chemicals, Pergamon Press, Oxford, 1988.
  • 22. Barber H.J., Cuprous cyanide, J. Chem. Soc. 1943, 1, 79-80.
  • 23. Watson J.H., Eastham J.F., Colored indicators for simple direct titration of magnesium and lithium reagents, J. Organomet. Chem. 1967, 9, 165-168.
  • 24. Kalkan M. and Erdik E., Reactivity of mixed organozinc and mixed organocopper reagents: 14. Phosphine-nickel catalyzed aryl-allyl coupling of (n-butyl)(aryl)zincs. Ligand and substrate control on the group selectivity and regioselectivity, Journal of Organometallic Chemistry, 2016, 818, 28-36.
There are 24 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Melike Kalkan

Publication Date August 18, 2017
Submission Date June 2, 2017
Acceptance Date August 12, 2017
Published in Issue Year 2017

Cite

Vancouver Kalkan M. ALLYLATION OF ARYL GRIGNARD REAGENTS IN THE PRESENCE OF TRANSITION METAL CATALYSIS AND ORGANIC CATALYSIS. JOTCSA. 2017;4(3):877-88.