Research Article
BibTex RIS Cite
Year 2017, , 23 - 38, 13.07.2017
https://doi.org/10.18596/jotcsa.323787

Abstract

References

  • 1. Mai HD, Rafiq K, Yoo H. Nano Metal-Organic Framework-Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. Chem-Eur J. 2017;23(24):5631-51.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton T. 2003:2781-804.
  • 3. Arici M, Yesilel OZ, Keskin S, Sahin O. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate. J Solid State Chem. 2014;210(1):280-6.
  • 4. Semerci F, Yesilel OZ, Soylu MS, Keskin S, Buyukgungor O. A two-dimensional photoluminescent cadmium(II) coordination polymer containing a new coordination mode of pyridine-2,3-dicarboxylate: Synthesis, structure and molecular simulations for gas storage and separation applications. Polyhedron. 2013;50(1):314-20.
  • 5. Guang-Xiang L. Synthesis, Crystal Structure and Magnetic Property of a Copper(II) Coordination Polymer Constructed from Nicotinic Acid. Chinese J Inorg Chem. 2013;29(9):1914-20.
  • 6. Ay B, Yag G, Yildiz E, Rheingold AL. Hydrothermal synthesis and characterization of {[Ni-2(na)4( µ-H2O)]∙2H2O}n (HNA = nicotinic acid) and its heterogeneous catalytic effect. Polyhedron. 2015;88:164-9.
  • 7. Zhang XJ, Wang WJ, Hu ZJ, Wang GN, Uvdal KS. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coordin Chem Rev. 2015;284:206-35.
  • 8. Batten SR, Chen BL, Vittal JJ. Coordination Polymers/MOFs: Structures, Properties and Applications. Chempluschem. 2016;81(8):669-70.
  • 9. Lou BY, He FD. Coordination polymers as potential solid forms of drugs: three zinc(II) coordination polymers of theophylline with biocompatible organic acids. New J Chem. 2013;37(2):309-16.
  • 10. Yan L, Liu W, Li CB, Wang YF, Ma L, Dong QQ. Hydrogen bonded supra-molecular framework in inorganic-organic hybrid compounds: Syntheses, structures, and photoluminescent properties. J Mol Struct. 2013;1035:240-6.
  • 11. Chen GF, Cao CZ. Hydrothermal synthesis and structural characterization of a zigzag-chain polymer of {[p-MeBzlPh3P][ZnCl2(NA)]}n (NA = nicotinic acid). J Coord Chem. 2008;61(2):262-9.
  • 12. Nie FM, Wang SY. Synthesis and characterization of two nicotinate-containing cadmium complexes in a tripodal ligand system. J Coord Chem. 2011;64(23):4145-56.
  • 13. Hojnik N, Kristl M, Golobic A, Jaglicic Z, Drofenik M. The synthesis, structure and physical properties of lanthanide(III) complexes with nicotinic acid. Cent Eur J Chem. 2014;12(2):220-6.
  • 14. Liu DS, Sui Y, Chen WT, Feng PY. Two New Nonlinear Optical and Ferroelectric Zn(II) Compounds Based on Nicotinic Acid and Tetrazole Derivative Ligands. Cryst Growth Des. 2015;15(8):4020-5.
  • 15. Song YS, Yan B, Chen ZX. Hydrothermal synthesis, crystal structure and luminescence of four novel metal-organic frameworks. J Solid State Chem. 2006;179(12):4037-46.
  • 16. Liu ZX. Synthesis, Crystal Structure and Biological Activity of a Polymeric Silver(I) Complex Derived From Nicotinic Acid. Synth React Inorg M. 2016;46(6):809-13.
  • 17. Vargova Z, Zelenak V, Cisarova I, Gyoryova K. Correlation of thermal and spectral properties of zinc(II) complexes of pyridinecarboxylic acids with their crystal structures. Thermochim Acta. 2004;423(1-2):149-57. 18. Di YY, Hong YP, Kong YX, Yang WW, Tan ZC. Synthesis, characterization, and thermochemistry of the solid state coordination compound Zn(Nic)2∙H2O(s) (Nic = nicotinic acid). J Chem Thermodyn. 2009;41(1):80-3.
  • 19. do Nascimento ALCS, Caires FJ, Gomes DJC, Gigante AC, Ionashiro M. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2014;575:212-8.
  • 20. Du M, Li CP, Liu CS, Fang SM. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coordin Chem Rev. 2013;257(7-8):1282-305.
  • 21. Bu XZ, Chen JQ, Hu MZ. A New Luminescent Zn(II) Coordination Polymer Constructed From Nicotinic Acid and 3,5-Diamino-1,2,4-Triazole Ligands. Synth React Inorg M. 2016;46(1):123-6.
  • 22. Qin JS, Yuan S, Wang Q, Alsalme A, Zhou HC. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J Mater Chem A. 2017;5(9):4280-91.
  • 23. An Z, Gao J, Zhu L. Isomeric luminescent Zn(II) coordination polymers based on pyridinecarboxylate and 5-methyl-1H-tetrazole ligands. J Mol Struct. 2013;1054:234-8.
  • 24. Gao JY, Xiong XH, Chen CJ, Xie WP, Ran XR, Yue ST. Syntheses, Structures, and Fluorescence of Two Novel 2D Zinc(II) Layered Frameworks Based on 3-Amino-1, 2, 4-triazole. Z Anorg Allg Chem. 2013;639(3-4):582-6.
  • 25. Liu DS, Huang XH, Huang CC, Huang GS, Chen JZ. Synthesis, crystal structures and properties of three new mixed-ligand d(10) metal complexes constructed from pyridinecarboxylate and in situ generated amino-tetrazole ligand. J Solid State Chem. 2009;182(7):1899-906.
  • 26. Yuan G, Shao KZ, Chen L, Liu XX, Su ZM, Ma JF. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand. J Solid State Chem. 2012;196:87-92.
  • 27. Hu JM, Zhao YQ, Yu BY, Van Hecke K, Cui GH. Synthesis and Characterization of Two Distinct 2D Nickel(II) Coordination Polymers From Dicarboxylate and Flexible Bis(imidazole) Ligands. Z Anorg Allg Chem. 2016;642(1):41-7.
  • 28. Erer H, Yesilel OZ, Arici M. A Series of Zinc(II) 3D -> 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Cryst Growth Des. 2015;15(7):3201-11.
  • 29. Semerci F, Yesilel OZ, Yuksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 30. Arici M, Yesilel OZ, Tas M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. J Solid State Chem. 2017;245:146-51.
  • 31. Zou RQ, Abdel-Fattah AI, Xu HW, Zhao YS, Hickmott DD. Storage and separation applications of nanoporous metal-organic frameworks. Crystengcomm. 2010;12(5):1337-53.
  • 32. So YH. Novel Thermoset Polyimidazole Amides. Macromolecules. 1992;25(2):516-20.
  • 33. Tian ZF, Lin JG, Su Y, Wen LI, Liu YM, Zhu HZ, et al. Flexible ligand, structural, and topological diversity: Isomerism in Zn(NO3)2 coordination polymers. Crystal Growth & Design. 2007;7(9):1863-7.
  • 34. Hoskins BF, Robson R, Slizys DA. An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2 (bix=1,4-bis(imidazol-1-ylmethyl)benzene). Journal of the American Chemical Society. 1997;119(12):2952-3.
  • 35. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41. 36. Sheldrick GM. A short history of SHELX. Acta Crystallographica Section A. 2008;64(1):112-22.
  • 37. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39(3):453-7.
  • 38. Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B. 2002;58:380-8.
  • 39. Willems TF, Rycroft C, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor Mesopor Mat. 2012;149(1):134-41.
  • 40. Buch V. Path-Integral Simulations of Mixed Para-D2 and Ortho-D2 Clusters - the Orientational Effects. Abstr Pap Am Chem S. 1994;208:119-Phys.
  • 41. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J Am Chem Soc. 1992;114(25):10024-35.
  • 42. Erucar I, Keskin S. High CO2 Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations. Ind Eng Chem Res. 2013;52(9):3462-72.
  • 43. Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23(24):12154-8.
  • 44. D. Frenkel, Smit B. Understanding Molecular Simulation. Elsevier Science2001. 664 p. 45. Zelenak V, Vargova Z, Gyoryova K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta A. 2007;66(2):262-72.
  • 46. Wu LJ, Li XX, Wang RH. Synthesis and Characterization of a Silver(I)-indium(III) Heterometallic Metal-organic Framework Based on Nicotinate. Chinese J Struc Chem. 2015;34(11):1703-8.
  • 47. Meng XM, Zhang X, Qi PF, Zong ZA, Jin F, Fan YH. Syntheses, structures, luminescent and photocatalytic properties of various polymers based on a "V"-shaped dicarboxylic acid. Rsc Adv. 2017;7(9):4855-71.

Hydrothermal Synthesis, Crystal Structure and Properties of 1D Zigzag Chain Zinc(II) Coordination Polymer Constructed from Nicotinic Acid and 1,4-Bis(imidazol-1-ylmethyl)benzene

Year 2017, , 23 - 38, 13.07.2017
https://doi.org/10.18596/jotcsa.323787

Abstract



A zinc–nicotinate complex, {[Zn(na)2(µ-pbix)]∙H2O}n (1), was obtained from the reaction of
zinc(II) acetate with nicotinic acid (Hna) and 1,4-bis(imidazol-1-ylmethyl)benzene
(pbix) in water at 120 °C under
hydrothermal conditions and characterized by elemental analysis,
IR spectroscopy, single crystal and powder X-ray diffraction. The thermal
stability and luminescent property for
1
were also reported. The asymmetric unit of
1
consists of one zinc(II) center, one pbix ligand, two na anions and one
non-coordinated water molecule, giving a formula of {[Zn(na)
2(
µ-pbix)]H2O}n. The Zn(II) ion
is coordinated by two nitrogen atoms from two different 1,4-bis(imidazol-1-ylmethyl)benzene
ligands and two oxygen atoms from two different
nicotinate (na) anions, thus showing a distorted
tetrahedral geometry.

The adjacent Zn(II) ions are linked into an infinite 1D zigzag
chain by 1,4-bis(imidazol-1-ylmethyl)benzene ligands. Grand canonical Monte
Carlo (GCMC) simulations were also performed to compute single-component H
2
adsorption isotherms at a pressure range of 0.01–100 bar and at 298 K and 77 K.
The maximum H
2 uptake in 1
was found as 68 cm
3/ g STP at 100 bar and 77 K. This study will be
useful to accelerate the hydrothermal synthesis of new coordination polymers
for gas storage applications.

References

  • 1. Mai HD, Rafiq K, Yoo H. Nano Metal-Organic Framework-Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. Chem-Eur J. 2017;23(24):5631-51.
  • 2. Janiak C. Engineering coordination polymers towards applications. Dalton T. 2003:2781-804.
  • 3. Arici M, Yesilel OZ, Keskin S, Sahin O. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate. J Solid State Chem. 2014;210(1):280-6.
  • 4. Semerci F, Yesilel OZ, Soylu MS, Keskin S, Buyukgungor O. A two-dimensional photoluminescent cadmium(II) coordination polymer containing a new coordination mode of pyridine-2,3-dicarboxylate: Synthesis, structure and molecular simulations for gas storage and separation applications. Polyhedron. 2013;50(1):314-20.
  • 5. Guang-Xiang L. Synthesis, Crystal Structure and Magnetic Property of a Copper(II) Coordination Polymer Constructed from Nicotinic Acid. Chinese J Inorg Chem. 2013;29(9):1914-20.
  • 6. Ay B, Yag G, Yildiz E, Rheingold AL. Hydrothermal synthesis and characterization of {[Ni-2(na)4( µ-H2O)]∙2H2O}n (HNA = nicotinic acid) and its heterogeneous catalytic effect. Polyhedron. 2015;88:164-9.
  • 7. Zhang XJ, Wang WJ, Hu ZJ, Wang GN, Uvdal KS. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coordin Chem Rev. 2015;284:206-35.
  • 8. Batten SR, Chen BL, Vittal JJ. Coordination Polymers/MOFs: Structures, Properties and Applications. Chempluschem. 2016;81(8):669-70.
  • 9. Lou BY, He FD. Coordination polymers as potential solid forms of drugs: three zinc(II) coordination polymers of theophylline with biocompatible organic acids. New J Chem. 2013;37(2):309-16.
  • 10. Yan L, Liu W, Li CB, Wang YF, Ma L, Dong QQ. Hydrogen bonded supra-molecular framework in inorganic-organic hybrid compounds: Syntheses, structures, and photoluminescent properties. J Mol Struct. 2013;1035:240-6.
  • 11. Chen GF, Cao CZ. Hydrothermal synthesis and structural characterization of a zigzag-chain polymer of {[p-MeBzlPh3P][ZnCl2(NA)]}n (NA = nicotinic acid). J Coord Chem. 2008;61(2):262-9.
  • 12. Nie FM, Wang SY. Synthesis and characterization of two nicotinate-containing cadmium complexes in a tripodal ligand system. J Coord Chem. 2011;64(23):4145-56.
  • 13. Hojnik N, Kristl M, Golobic A, Jaglicic Z, Drofenik M. The synthesis, structure and physical properties of lanthanide(III) complexes with nicotinic acid. Cent Eur J Chem. 2014;12(2):220-6.
  • 14. Liu DS, Sui Y, Chen WT, Feng PY. Two New Nonlinear Optical and Ferroelectric Zn(II) Compounds Based on Nicotinic Acid and Tetrazole Derivative Ligands. Cryst Growth Des. 2015;15(8):4020-5.
  • 15. Song YS, Yan B, Chen ZX. Hydrothermal synthesis, crystal structure and luminescence of four novel metal-organic frameworks. J Solid State Chem. 2006;179(12):4037-46.
  • 16. Liu ZX. Synthesis, Crystal Structure and Biological Activity of a Polymeric Silver(I) Complex Derived From Nicotinic Acid. Synth React Inorg M. 2016;46(6):809-13.
  • 17. Vargova Z, Zelenak V, Cisarova I, Gyoryova K. Correlation of thermal and spectral properties of zinc(II) complexes of pyridinecarboxylic acids with their crystal structures. Thermochim Acta. 2004;423(1-2):149-57. 18. Di YY, Hong YP, Kong YX, Yang WW, Tan ZC. Synthesis, characterization, and thermochemistry of the solid state coordination compound Zn(Nic)2∙H2O(s) (Nic = nicotinic acid). J Chem Thermodyn. 2009;41(1):80-3.
  • 19. do Nascimento ALCS, Caires FJ, Gomes DJC, Gigante AC, Ionashiro M. Thermal behaviour of nicotinic acid, sodium nicotinate and its compounds with some bivalent transition metal ions. Thermochim Acta. 2014;575:212-8.
  • 20. Du M, Li CP, Liu CS, Fang SM. Design and construction of coordination polymers with mixed-ligand synthetic strategy. Coordin Chem Rev. 2013;257(7-8):1282-305.
  • 21. Bu XZ, Chen JQ, Hu MZ. A New Luminescent Zn(II) Coordination Polymer Constructed From Nicotinic Acid and 3,5-Diamino-1,2,4-Triazole Ligands. Synth React Inorg M. 2016;46(1):123-6.
  • 22. Qin JS, Yuan S, Wang Q, Alsalme A, Zhou HC. Mixed-linker strategy for the construction of multifunctional metal-organic frameworks. J Mater Chem A. 2017;5(9):4280-91.
  • 23. An Z, Gao J, Zhu L. Isomeric luminescent Zn(II) coordination polymers based on pyridinecarboxylate and 5-methyl-1H-tetrazole ligands. J Mol Struct. 2013;1054:234-8.
  • 24. Gao JY, Xiong XH, Chen CJ, Xie WP, Ran XR, Yue ST. Syntheses, Structures, and Fluorescence of Two Novel 2D Zinc(II) Layered Frameworks Based on 3-Amino-1, 2, 4-triazole. Z Anorg Allg Chem. 2013;639(3-4):582-6.
  • 25. Liu DS, Huang XH, Huang CC, Huang GS, Chen JZ. Synthesis, crystal structures and properties of three new mixed-ligand d(10) metal complexes constructed from pyridinecarboxylate and in situ generated amino-tetrazole ligand. J Solid State Chem. 2009;182(7):1899-906.
  • 26. Yuan G, Shao KZ, Chen L, Liu XX, Su ZM, Ma JF. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand. J Solid State Chem. 2012;196:87-92.
  • 27. Hu JM, Zhao YQ, Yu BY, Van Hecke K, Cui GH. Synthesis and Characterization of Two Distinct 2D Nickel(II) Coordination Polymers From Dicarboxylate and Flexible Bis(imidazole) Ligands. Z Anorg Allg Chem. 2016;642(1):41-7.
  • 28. Erer H, Yesilel OZ, Arici M. A Series of Zinc(II) 3D -> 3D Interpenetrated Coordination Polymers Based On Thiophene-2,5-dicarboxylate and Bis(Imidazole) Derivative Linkers. Cryst Growth Des. 2015;15(7):3201-11.
  • 29. Semerci F, Yesilel OZ, Yuksel F. Self-assembly of three new metal organic coordination networks based on 1,2-bis(imidazol-1yl-methyl)benzene. Polyhedron. 2015;102:1-7.
  • 30. Arici M, Yesilel OZ, Tas M. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties. J Solid State Chem. 2017;245:146-51.
  • 31. Zou RQ, Abdel-Fattah AI, Xu HW, Zhao YS, Hickmott DD. Storage and separation applications of nanoporous metal-organic frameworks. Crystengcomm. 2010;12(5):1337-53.
  • 32. So YH. Novel Thermoset Polyimidazole Amides. Macromolecules. 1992;25(2):516-20.
  • 33. Tian ZF, Lin JG, Su Y, Wen LI, Liu YM, Zhu HZ, et al. Flexible ligand, structural, and topological diversity: Isomerism in Zn(NO3)2 coordination polymers. Crystal Growth & Design. 2007;7(9):1863-7.
  • 34. Hoskins BF, Robson R, Slizys DA. An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2 (bix=1,4-bis(imidazol-1-ylmethyl)benzene). Journal of the American Chemical Society. 1997;119(12):2952-3.
  • 35. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography. 2009;42(2):339-41. 36. Sheldrick GM. A short history of SHELX. Acta Crystallographica Section A. 2008;64(1):112-22.
  • 37. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, et al. Mercury: visualization and analysis of crystal structures. J Appl Crystallogr. 2006;39(3):453-7.
  • 38. Allen FH. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B. 2002;58:380-8.
  • 39. Willems TF, Rycroft C, Kazi M, Meza JC, Haranczyk M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor Mesopor Mat. 2012;149(1):134-41.
  • 40. Buch V. Path-Integral Simulations of Mixed Para-D2 and Ortho-D2 Clusters - the Orientational Effects. Abstr Pap Am Chem S. 1994;208:119-Phys.
  • 41. Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. Uff, a Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics Simulations. J Am Chem Soc. 1992;114(25):10024-35.
  • 42. Erucar I, Keskin S. High CO2 Selectivity of an Amine-Functionalized Metal Organic Framework in Adsorption-Based and Membrane-Based Gas Separations. Ind Eng Chem Res. 2013;52(9):3462-72.
  • 43. Garberoglio G. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23(24):12154-8.
  • 44. D. Frenkel, Smit B. Understanding Molecular Simulation. Elsevier Science2001. 664 p. 45. Zelenak V, Vargova Z, Gyoryova K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim Acta A. 2007;66(2):262-72.
  • 46. Wu LJ, Li XX, Wang RH. Synthesis and Characterization of a Silver(I)-indium(III) Heterometallic Metal-organic Framework Based on Nicotinate. Chinese J Struc Chem. 2015;34(11):1703-8.
  • 47. Meng XM, Zhang X, Qi PF, Zong ZA, Jin F, Fan YH. Syntheses, structures, luminescent and photocatalytic properties of various polymers based on a "V"-shaped dicarboxylic acid. Rsc Adv. 2017;7(9):4855-71.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

Güneş Günay Sezer

İlknur Eruçar

Publication Date July 13, 2017
Submission Date June 27, 2017
Acceptance Date September 11, 2017
Published in Issue Year 2017

Cite

Vancouver Günay Sezer G, Eruçar İ. Hydrothermal Synthesis, Crystal Structure and Properties of 1D Zigzag Chain Zinc(II) Coordination Polymer Constructed from Nicotinic Acid and 1,4-Bis(imidazol-1-ylmethyl)benzene. JOTCSA. 2017;4(1):23-38.