Research Article
BibTex RIS Cite

Electrochemistry and sensitive determination of a metal complex azo dye using graphite paste electrode modified with Na-bentonite

Year 2017, , 931 - 952, 11.09.2017
https://doi.org/10.18596/jotcsa.334999

Abstract

Graphite and its composites have gained considerable
attention in electrochemical applications due to their excellent structural,
electrical and chemical properties. In this study, a graphite paste electrode
(GPE) modified with natural Na-bentonite (BGPE) is fabricated and utilized for
the sensitive determination of Lanaset Red G (LRG) which is a kind of azo
containing metal complex dye. The BGPE shows excellent enhancement in peak
currents as compared to that of the GPE. The detection limit of LRG is
determined to be as low as 0.65±0.08 when utilizing the BGPE as the working
electrode in square wave voltammetry experiments (SWV). The electrochemical
behavior of LRG is also investigated using a cyclic voltammetry (CV) technique
to propose reaction mechanisms. Effects of pH and scan rate on the
electrochemical behavior of LRG are studied to calculate transfer coefficients,
the number of protons and electrons transferred in the redox reaction. The results
show that a quasi-reversible reaction occurs on the BGPE surface/electrolyte
interface. The morphology and the chemical characterization of both BGPE and
GPE electrodes are investigated by the atomic force microscopy (AFM) technique
and the diffuse reflectance infrared Fourier transform spectroscopy (DRIFT),
respectively.

References

  • Obasi JNOOIOKO. Environmental and Health Impact of Industrial Wastewater Effluents in Nigeria - A Review. International Journal of Advanced Research in Biological Sciences. 2016;3(6):55-67.
  • Ahmed G, Anawar HM, Takuwa DT, Chibua IT, Singh GS, Sichilongo K. Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachlorocyclohexanes in land and water ecosystems. International Journal of Environmental Science and Technology. 2015;12(8):2741-56.
  • Križanec; AMLMB, Valh SVJV. Textile Finishing Industry as an Important Source of Organic Pollutants In: Puzyn T, editor. Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update. Rijeka, Crotia: InTech; 2012.
  • Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management. 2012;93(1):154-68.
  • Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies. 2016;2(4):175-84.
  • GmbH HTEG. Textile Effects LANASET® dyes Switzerland: Huntsman International LLC 2007 [Available from: https://www.textile-dyes.co.uk/lanaset.pdf.
  • Acar ET, Ortaboy S, Hisarlı G, Atun G. Sensitive determination and electro-oxidative polymerization of azodyes on a carbon paste electrode modified with bentonite. Applied Clay Science. 2015;105–106:131-41.
  • Zuo J, Zhang Z, Jiao J, Pang H, Zhang D, Ma H. Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6[PMo9V3O40], poly(3,4-ethylenedioxythiophene) and Au nanoparticles. Sensors and Actuators B: Chemical. 2016;236:418-24.
  • Yu J, Jia J, Ma Z. Comparison of Electrochemical Behavior of Hydroxyl‐substituted and Nonhydroxyl‐substituted Azo Dyes at a Glassy Carbon Electrode. Journal of the Chinese Chemical Society. 2004;51(6):1319-24.
  • Ortaboy S, Atun G, editors. Electrochemistry of Co(TPTZ)2 Complex on a Carbon Paste Electrode Modified with TiO2 Nanoparticles. Meeting Abstracts; 2016 April 1, 2016.
  • Macht F, Eusterhues K, Pronk GJ, Totsche KU. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science. 2011;53(1):20-6.
  • Mikkelsen PE. Cement-Bentonite Grout Backfill for Borehole Instruments. Geotechnical News. 2002.
  • Sajid M. Bentonite-modified electrochemical sensors: a brief overview of features and applications. Ionics. 2017.
  • Fuenkajorn K, Daemen JJ. Sealing of Boreholes and Underground Excavations in Rock: Springer Netherlands; 2012.
  • Inc. SIM. Doğal Bentonit (Katkısız) Turkey: Samaş Industrial Minerals Inc.; 2017 [Available from: http://www.samas.com.tr/tr/urunlerimiz/dogal-bentonit.html.
  • T. Armaroli, T. Becue, Gautier S. Diffuse Reflection Infrared Spectroscopy (DRIFTS): Application to the in situ Analysis of Catalysts. Oil & Gas Science and Technology – Rev IFP. 2004;59(2):215-37.
  • Motawie AM, Madany MM, El-Dakrory AZ, Osman HM, Ismail EA, Badr MM, et al. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers. Egyptian Journal of Petroleum. 2014;23(3):331-8.
  • Faheem Khan M, Kim S, Lee D, Schmid S, Boisen A, Thundat T. Nanomechanical identification of liquid reagents in a microfluidic channel. Lab Chip. 2014;14(7):1302-7.
  • Pramanik S, Das G, Karak N. Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Advances. 2013;3(14):4574-81.
  • Xu LC, Siedlecki CA. Atomic Force Microscopy. Reference Module in Materials Science and Materials Engineering: Elsevier; 2017.
  • M. Raposo, Q. Ferreira, Ribeiro PA. A Guide for Atomic Force Microscopy Analysis of Soft Condensed Matter. In: A. Mendez-Vilas, Diaz J, editors. Modern Research and Educational Topics in Microscopy. 1: FORMATEX; 2007. p. 758-69.
  • Ortaboy S. Electropolymerization of aniline in phosphonium-based ionic liquids and their application as protective films against corrosion. Journal of Applied Polymer Science. 2016;133(38):n/a-n/a.
  • Bajpai AK, Bhatt R, Katare R. Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films. Micron. 2016;90:12-7.
  • Hazra P, Jana A, Datta J. Voltammetric deposition of BiCdTe composite films with improved functional properties for photo-electrochemical cells. New Journal of Chemistry. 2016;40(4):3094-103.
  • Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, et al. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chemistry of Materials. 2006;18(18):4354-60.
  • Fisher AC. Electrochemistry Teaching Notes Department of Chemical Engineering and Biotechnology, University of Cambridge: University of Cambridge; 2010 [Available from: http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes
  • Brownson DAC, Banks CE. Interpreting Electrochemistry. The Handbook of Graphene Electrochemistry. London: Springer London; 2014. p. 23-77.
  • Pedrosa JRSLCRVA. Polymer brush modified electrode with switchable selectivity triggered by pH changes enhanced by gold nanoparticles. J Braz Chem Soc. 2014;25(3):453-9.
  • Eckermann AL, Feld DJ, Shaw JA, Meade TJ. Electrochemistry of redox-active self-assembled monolayers. Coordination Chemistry Reviews. 2010;254(15):1769-802.
  • Ball P, Nicholls CH. Azo-hydrazone tautomerism of hydroxyazo compounds—a review. Dyes and Pigments. 1982;3(1):5-26.
  • Bose RN, Fonkeng B, Barr-David G, Farrell RP, Judd RJ, Lay PA, et al. Redox Potentials of Chromium(V)/(IV), -(V)/(III), and -(IV)/(III) Complexes with 2-Ethyl-2-hydroxybutanoato(2−/1−) Ligands. Journal of the American Chemical Society. 1996;118(30):7139-44.
  • H. Jayadevappa YS, K. M. Mahadevani B. E. Kumaraswamy, A. K. Sathpathi, B. S. Sherigara. Electrochemical behavior of some industrially important azonaphthol derivatives at glassy carbon electrode. Indian Journal of Chemical Technology. 2006;13:269-74.
  • Gan T, Sun J, Zhu H, Zhu J, Liu D. Synthesis and characterization of graphene and ordered mesoporous TiO2 as electrocatalyst for the determination of azo colorants. Journal of Solid State Electrochemistry. 2013;17(8):2193-201.
  • Ma MM. Voltammetric Determination of Dye-Uptake for C. I. Acid Blue 120 Dyeing Silk. Analytical Letters. 2009;42(18):3073-84.
  • Zhang Y, Zhang X, Lu X, Yang J, Wu K. Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red. Food Chemistry. 2010;122(3):909-13.
  • Lin H, Li G, Wu K. Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chemistry. 2008;107(1):531-6.
  • Rebane R, Leito I, Yurchenko S, Herodes K. A review of analytical techniques for determination of Sudan I–IV dyes in food matrixes. Journal of Chromatography A. 2010;1217(17):2747-57.
  • Wu Y. Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chemistry. 2010;121(2):580-4.
  • Mo Z, Zhang Y, Zhao F, Xiao F, Guo G, Zeng B. Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chemistry. 2010;121(1):233-7.
Year 2017, , 931 - 952, 11.09.2017
https://doi.org/10.18596/jotcsa.334999

Abstract

References

  • Obasi JNOOIOKO. Environmental and Health Impact of Industrial Wastewater Effluents in Nigeria - A Review. International Journal of Advanced Research in Biological Sciences. 2016;3(6):55-67.
  • Ahmed G, Anawar HM, Takuwa DT, Chibua IT, Singh GS, Sichilongo K. Environmental assessment of fate, transport and persistent behavior of dichlorodiphenyltrichloroethanes and hexachlorocyclohexanes in land and water ecosystems. International Journal of Environmental Science and Technology. 2015;12(8):2741-56.
  • Križanec; AMLMB, Valh SVJV. Textile Finishing Industry as an Important Source of Organic Pollutants In: Puzyn T, editor. Organic Pollutants Ten Years After the Stockholm Convention - Environmental and Analytical Update. Rijeka, Crotia: InTech; 2012.
  • Verma AK, Dash RR, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management. 2012;93(1):154-68.
  • Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies. 2016;2(4):175-84.
  • GmbH HTEG. Textile Effects LANASET® dyes Switzerland: Huntsman International LLC 2007 [Available from: https://www.textile-dyes.co.uk/lanaset.pdf.
  • Acar ET, Ortaboy S, Hisarlı G, Atun G. Sensitive determination and electro-oxidative polymerization of azodyes on a carbon paste electrode modified with bentonite. Applied Clay Science. 2015;105–106:131-41.
  • Zuo J, Zhang Z, Jiao J, Pang H, Zhang D, Ma H. Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6[PMo9V3O40], poly(3,4-ethylenedioxythiophene) and Au nanoparticles. Sensors and Actuators B: Chemical. 2016;236:418-24.
  • Yu J, Jia J, Ma Z. Comparison of Electrochemical Behavior of Hydroxyl‐substituted and Nonhydroxyl‐substituted Azo Dyes at a Glassy Carbon Electrode. Journal of the Chinese Chemical Society. 2004;51(6):1319-24.
  • Ortaboy S, Atun G, editors. Electrochemistry of Co(TPTZ)2 Complex on a Carbon Paste Electrode Modified with TiO2 Nanoparticles. Meeting Abstracts; 2016 April 1, 2016.
  • Macht F, Eusterhues K, Pronk GJ, Totsche KU. Specific surface area of clay minerals: Comparison between atomic force microscopy measurements and bulk-gas (N2) and -liquid (EGME) adsorption methods. Applied Clay Science. 2011;53(1):20-6.
  • Mikkelsen PE. Cement-Bentonite Grout Backfill for Borehole Instruments. Geotechnical News. 2002.
  • Sajid M. Bentonite-modified electrochemical sensors: a brief overview of features and applications. Ionics. 2017.
  • Fuenkajorn K, Daemen JJ. Sealing of Boreholes and Underground Excavations in Rock: Springer Netherlands; 2012.
  • Inc. SIM. Doğal Bentonit (Katkısız) Turkey: Samaş Industrial Minerals Inc.; 2017 [Available from: http://www.samas.com.tr/tr/urunlerimiz/dogal-bentonit.html.
  • T. Armaroli, T. Becue, Gautier S. Diffuse Reflection Infrared Spectroscopy (DRIFTS): Application to the in situ Analysis of Catalysts. Oil & Gas Science and Technology – Rev IFP. 2004;59(2):215-37.
  • Motawie AM, Madany MM, El-Dakrory AZ, Osman HM, Ismail EA, Badr MM, et al. Physico-chemical characteristics of nano-organo bentonite prepared using different organo-modifiers. Egyptian Journal of Petroleum. 2014;23(3):331-8.
  • Faheem Khan M, Kim S, Lee D, Schmid S, Boisen A, Thundat T. Nanomechanical identification of liquid reagents in a microfluidic channel. Lab Chip. 2014;14(7):1302-7.
  • Pramanik S, Das G, Karak N. Facile preparation of polyaniline nanofibers modified bentonite nanohybrid for gas sensor application. RSC Advances. 2013;3(14):4574-81.
  • Xu LC, Siedlecki CA. Atomic Force Microscopy. Reference Module in Materials Science and Materials Engineering: Elsevier; 2017.
  • M. Raposo, Q. Ferreira, Ribeiro PA. A Guide for Atomic Force Microscopy Analysis of Soft Condensed Matter. In: A. Mendez-Vilas, Diaz J, editors. Modern Research and Educational Topics in Microscopy. 1: FORMATEX; 2007. p. 758-69.
  • Ortaboy S. Electropolymerization of aniline in phosphonium-based ionic liquids and their application as protective films against corrosion. Journal of Applied Polymer Science. 2016;133(38):n/a-n/a.
  • Bajpai AK, Bhatt R, Katare R. Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films. Micron. 2016;90:12-7.
  • Hazra P, Jana A, Datta J. Voltammetric deposition of BiCdTe composite films with improved functional properties for photo-electrochemical cells. New Journal of Chemistry. 2016;40(4):3094-103.
  • Crispin X, Jakobsson FLE, Crispin A, Grim PCM, Andersson P, Volodin A, et al. The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)−Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes. Chemistry of Materials. 2006;18(18):4354-60.
  • Fisher AC. Electrochemistry Teaching Notes Department of Chemical Engineering and Biotechnology, University of Cambridge: University of Cambridge; 2010 [Available from: http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes
  • Brownson DAC, Banks CE. Interpreting Electrochemistry. The Handbook of Graphene Electrochemistry. London: Springer London; 2014. p. 23-77.
  • Pedrosa JRSLCRVA. Polymer brush modified electrode with switchable selectivity triggered by pH changes enhanced by gold nanoparticles. J Braz Chem Soc. 2014;25(3):453-9.
  • Eckermann AL, Feld DJ, Shaw JA, Meade TJ. Electrochemistry of redox-active self-assembled monolayers. Coordination Chemistry Reviews. 2010;254(15):1769-802.
  • Ball P, Nicholls CH. Azo-hydrazone tautomerism of hydroxyazo compounds—a review. Dyes and Pigments. 1982;3(1):5-26.
  • Bose RN, Fonkeng B, Barr-David G, Farrell RP, Judd RJ, Lay PA, et al. Redox Potentials of Chromium(V)/(IV), -(V)/(III), and -(IV)/(III) Complexes with 2-Ethyl-2-hydroxybutanoato(2−/1−) Ligands. Journal of the American Chemical Society. 1996;118(30):7139-44.
  • H. Jayadevappa YS, K. M. Mahadevani B. E. Kumaraswamy, A. K. Sathpathi, B. S. Sherigara. Electrochemical behavior of some industrially important azonaphthol derivatives at glassy carbon electrode. Indian Journal of Chemical Technology. 2006;13:269-74.
  • Gan T, Sun J, Zhu H, Zhu J, Liu D. Synthesis and characterization of graphene and ordered mesoporous TiO2 as electrocatalyst for the determination of azo colorants. Journal of Solid State Electrochemistry. 2013;17(8):2193-201.
  • Ma MM. Voltammetric Determination of Dye-Uptake for C. I. Acid Blue 120 Dyeing Silk. Analytical Letters. 2009;42(18):3073-84.
  • Zhang Y, Zhang X, Lu X, Yang J, Wu K. Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red. Food Chemistry. 2010;122(3):909-13.
  • Lin H, Li G, Wu K. Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode. Food Chemistry. 2008;107(1):531-6.
  • Rebane R, Leito I, Yurchenko S, Herodes K. A review of analytical techniques for determination of Sudan I–IV dyes in food matrixes. Journal of Chromatography A. 2010;1217(17):2747-57.
  • Wu Y. Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chemistry. 2010;121(2):580-4.
  • Mo Z, Zhang Y, Zhao F, Xiao F, Guo G, Zeng B. Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chemistry. 2010;121(1):233-7.
There are 39 citations in total.

Details

Subjects Engineering, Chemical Engineering
Journal Section Articles
Authors

SINEM Ortaboy

Publication Date September 11, 2017
Submission Date August 17, 2017
Acceptance Date September 11, 2017
Published in Issue Year 2017

Cite

Vancouver Ortaboy S. Electrochemistry and sensitive determination of a metal complex azo dye using graphite paste electrode modified with Na-bentonite. JOTCSA. 2017;4(3):931-52.