Research Article
BibTex RIS Cite

Stable Nano Calcite Synthesis

Year 2018, , 869 - 880, 01.01.2018
https://doi.org/10.18596/jotcsa.371374

Abstract

Synthesis of calcium carbonate (CaCO3) particles in the presence of a population of carbon dioxide (CO2) bubbles was investigated in the calcium hydroxide (Ca(OH)2) solution, which is a natural stabilizer for CaCO3. Possible chemical speciation reactions were presented for an inorganic synthesis of hollow nano-CaCO3 particles. In the progress of CaCO3 synthesis, some of the particles started to dissolve at their edges and turned into hollow nano-CaCO3 particles. Some of the pores closed at the end of crystallization as a result of dissolution-recrystallization mechanism. Hollow nano-CaCO3 particles with sizes of about 300 nm were synthesized with a narrow size distribution. It was concluded that the hollow nano-CaCO3 particles could be advantageous due to lower weights and higher surface areas.

References

  • 1. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B-Eng. 2008;39(6):933-61.
  • 2. Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst Growth Des. 2012;12(7):3806-14.
  • 3. Lee KB, Park SB, Jang YN, Lee SW. Morphological control of CaCO3 films with large area: Effect of additives and self-organization under atmospheric conditions. J Colloid Interf Sci. 2011;355(1):54-60.
  • 4. Rieger J, Kellermeier M, Nicoleau L. Formation of Nanoparticles and Nanostructures-An Industrial Perspective on CaCO3, Cement, and Polymers. Angew Chem Int Edit. 2014;53(46):12380-96.
  • 5. Sant'Anna SSE, de Souza DA, de Araujo DM, Carvalho CD, Yoshida MI. Physico-chemical Analysis of Flexible Polyurethane Foams Containing Commercial Calcium Carbonate. Mater Res-Ibero-Am J. 2008;11(4):433-8.
  • 6. Andreassen JP. Formation mechanism and morphology in precipitation of vaterite - nano aggregation or crystal growth? Journal of Crystal Growth. 2005;274(1-2):256-64.
  • 7. Matahwa H, Ramiah V, Sanderson RD. Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. Journal of Crystal Growth. 2008;310(21):4561-9.
  • 8. Jung WM, Kang SH, Kim KS, Kim WS, Choi CK. Precipitation of calcium carbonate particles by gas-liquid reaction: Morphology and size distribution of particles in Couette-Taylor and stirred tank reactors. Journal of Crystal Growth. 2010;312(22):3331-9.
  • 9. Kakaraniya S, Gupta A, Mehra A. Reactive precipitation in gas-slurry systems: The CO2Ca(OH)(2)-CaCO3 system. Ind Eng Chem Res. 2007;46(10):3170-9.
  • 10. Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J. Calcite precipitation from CO2-H2O-Ca(OH)(2) slurry under high pressure of CO2. Journal of Crystal Growth. 2007;308(1):228-36.
  • 11. Ukrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol. 2007;171(3):192-9.
  • 12. Chen J-F, Wang Y-H, Guo F, Xin-Ming, Zheng C. <Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation>. Industrial Engineering Chemical Research. 2000;39:948-54.
  • 13. Sun B-C, Wang X-M, Chen J-M, Chu G-W, Chen J-F, Shao L. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chemical Engineering Journal. 2011;168(2):731-6.
  • 14. Varma S, Chen P-C, Unnikrishnan G. Gas–liquid reactive crystallization for the synthesis of CaCO3 nanocrystals. Materials Chemistry and Physics. 2011;126(1-2):232-6.
  • 15. Matsumoto M, Fukunaga T, Onoe K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chemical Engineering Research and Design. 2010;88(12):1624-30.
  • 16. López-Periago AM, Pacciani R, García-González C, Vega LF, Domingo C. A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. The Journal of Supercritical Fluids. 2010;52(3):298-305.
  • 17. Sonawane SH, Shirsath SR, Khanna PK, Pawar S, Mahajan CM, Paithankar V, et al. An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization. Chemical Engineering Journal. 2008;143(1-3):308-13.
  • 18. Plank J, Hoffmann H, Schölkopf J, Seidl W, Zeitler I, Zhang Z. Preparation and Characterization of a Calcium Carbonate Aerogel. Research Letters in Materials Science. 2009;2009:1-3.
  • 19. Tai CY, Chen C-k. Particle morphology, habit, and size control of using reverse microemulsion technique. Chemical Engineering Science. 2008;63(14):3632-42.
  • 20. Kang SH, Hirasawa I, Kim WS, Choi CK. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. J Colloid Interface Sci. 2005;288(2):496-502.
  • 21. Montes-Hernandez G, Renard F. Co-utilisation of alkaline solid waste and compressed-or-supercritical CO2 to produce calcite and calcite/Se0 red nanocomposite. The Journal of Supercritical Fluids. 2011;56(1):48-55.
  • 22. Lin R-y, Zhang J-y, Bai Y-q. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • 23. Chibowski E, Holysz L, Wojcik W. Changes in Zeta-Potential and Surface Free-Energy of Calcium-Carbonate Due to Exposure to Radiofrequency Electric-Field. Colloid Surface A. 1994;92(1-2):79-85.
  • 24. Chibowski E, Hotysz L, Szczes A. Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloid Surface A. 2003;222(1-3):41-54.
  • 25. Kes M. Determination of the particle interactions - rheology- surface roughness relationshipmfor dental ceramics [M.S]. İzmir: İzmir Institute of Technology; 2007.
  • 26. Kilic S, Toprak G, Ozdemir E. Stability of CaCO3 in Ca(OH)(2) solution. Int J Miner Process. 2016;147:1-9.
  • 27. Ulkeryildiz E, Kilic S, Ozdemir E. Rice-like hollow nano-CaCO3 synthesis. Journal of Crystal Growth. 2016;450:174-80.
  • 28. Ulkeryildiz E, Kilic S, Ozdemir E. Nano-CaCO3 synthesis by jet flow. Colloid Surface A. 2017;512:34-40.
  • 29. Carmona JG, Morales JG, Rodriguez-Clemente R. Rhombohedral-scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)(2)-CO2-H2O. J Colloid Interf Sci. 2003;261(2):434-40.
  • 30. Carmona JG, Morales JG, Sainz JF, Loste E, Clemente RR. The mechanism of precipitation of chain-like calcite. Journal of Crystal Growth. 2004;262(1-4):479-89.
  • 31. Johannsen K, Rademacher S. Modelling the Kinetics of Calcium Hydroxide Dissolution in Water. Acta Hydrochimica Et Hydrobiologica. 1999;27(2):72-8.
  • 32. Ozdemir E. Biomimetic CO2 Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam. Energ Fuel. 2009;23:5725-30.
  • 33. Xu AW, Ma YR, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17(5):415-49.
  • 34. Gunasekaran S, Anbalagan G. Spectroscopic study of phase transitions in natural calcite mineral. Spectrochim Acta A. 2008;69(4):1246-51.
  • 35. Montes-Hernandez G, Fernández-Martínez A, Charlet L, Tisserand D, Renard F. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. Journal of Crystal Growth. 2008;310(11):2946-53.
  • 36. Carmona JG, Morales JG, Sainz JF, Clemente RR. Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives. Powder Technol. 2003;130(1-3):307-15.
  • 37. Jung WM, Kang SH, Kim W-S, Choi CK. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor. Chemical Engineering Science. 2000;55(4):733-47.
  • 38. Burns JR, Jachuck JJ. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. Aiche J. 2005;51(5):1497-507.
  • 39. Lin RY, Zhang JY, Bai YQ. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • 40. Takemura F, Matsumoto Y. Dissolution rate of spherical carbon dioxide bubbles in strong alkaline solutions. Chemical Engineering Science. 2000;55(18):3907-17.
  • 41. Molva M, Kilic S, Ozdemir E. Effect of carbonic anhydrase on CaCO3 crystallization in alkaline solution. Energ Fuel. 2016;30(12):10686-95. 42. Rodriguez-Blanco JD, Shaw S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3(1):265-71.
  • 43. Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J Alloy Compd. 2012;536:S477-S9.
  • 44. Tai CY, Chen FB. Polymorphism of CaCO3 precipitated in a constant-composition environment. Aiche J. 1998;44(8):1790-8.
Year 2018, , 869 - 880, 01.01.2018
https://doi.org/10.18596/jotcsa.371374

Abstract

References

  • 1. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B-Eng. 2008;39(6):933-61.
  • 2. Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S. Mechanistic Insights into the Crystallization of Amorphous Calcium Carbonate (ACC). Cryst Growth Des. 2012;12(7):3806-14.
  • 3. Lee KB, Park SB, Jang YN, Lee SW. Morphological control of CaCO3 films with large area: Effect of additives and self-organization under atmospheric conditions. J Colloid Interf Sci. 2011;355(1):54-60.
  • 4. Rieger J, Kellermeier M, Nicoleau L. Formation of Nanoparticles and Nanostructures-An Industrial Perspective on CaCO3, Cement, and Polymers. Angew Chem Int Edit. 2014;53(46):12380-96.
  • 5. Sant'Anna SSE, de Souza DA, de Araujo DM, Carvalho CD, Yoshida MI. Physico-chemical Analysis of Flexible Polyurethane Foams Containing Commercial Calcium Carbonate. Mater Res-Ibero-Am J. 2008;11(4):433-8.
  • 6. Andreassen JP. Formation mechanism and morphology in precipitation of vaterite - nano aggregation or crystal growth? Journal of Crystal Growth. 2005;274(1-2):256-64.
  • 7. Matahwa H, Ramiah V, Sanderson RD. Calcium carbonate crystallization in the presence of modified polysaccharides and linear polymeric additives. Journal of Crystal Growth. 2008;310(21):4561-9.
  • 8. Jung WM, Kang SH, Kim KS, Kim WS, Choi CK. Precipitation of calcium carbonate particles by gas-liquid reaction: Morphology and size distribution of particles in Couette-Taylor and stirred tank reactors. Journal of Crystal Growth. 2010;312(22):3331-9.
  • 9. Kakaraniya S, Gupta A, Mehra A. Reactive precipitation in gas-slurry systems: The CO2Ca(OH)(2)-CaCO3 system. Ind Eng Chem Res. 2007;46(10):3170-9.
  • 10. Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J. Calcite precipitation from CO2-H2O-Ca(OH)(2) slurry under high pressure of CO2. Journal of Crystal Growth. 2007;308(1):228-36.
  • 11. Ukrainczyk M, Kontrec J, Babic-Ivancic V, Brecevic L, Kralj D. Experimental design approach to calcium carbonate precipitation in a semicontinuous process. Powder Technol. 2007;171(3):192-9.
  • 12. Chen J-F, Wang Y-H, Guo F, Xin-Ming, Zheng C. <Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation>. Industrial Engineering Chemical Research. 2000;39:948-54.
  • 13. Sun B-C, Wang X-M, Chen J-M, Chu G-W, Chen J-F, Shao L. Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in a rotating packed bed. Chemical Engineering Journal. 2011;168(2):731-6.
  • 14. Varma S, Chen P-C, Unnikrishnan G. Gas–liquid reactive crystallization for the synthesis of CaCO3 nanocrystals. Materials Chemistry and Physics. 2011;126(1-2):232-6.
  • 15. Matsumoto M, Fukunaga T, Onoe K. Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chemical Engineering Research and Design. 2010;88(12):1624-30.
  • 16. López-Periago AM, Pacciani R, García-González C, Vega LF, Domingo C. A breakthrough technique for the preparation of high-yield precipitated calcium carbonate. The Journal of Supercritical Fluids. 2010;52(3):298-305.
  • 17. Sonawane SH, Shirsath SR, Khanna PK, Pawar S, Mahajan CM, Paithankar V, et al. An innovative method for effective micro-mixing of CO2 gas during synthesis of nano-calcite crystal using sonochemical carbonization. Chemical Engineering Journal. 2008;143(1-3):308-13.
  • 18. Plank J, Hoffmann H, Schölkopf J, Seidl W, Zeitler I, Zhang Z. Preparation and Characterization of a Calcium Carbonate Aerogel. Research Letters in Materials Science. 2009;2009:1-3.
  • 19. Tai CY, Chen C-k. Particle morphology, habit, and size control of using reverse microemulsion technique. Chemical Engineering Science. 2008;63(14):3632-42.
  • 20. Kang SH, Hirasawa I, Kim WS, Choi CK. Morphological control of calcium carbonate crystallized in reverse micelle system with anionic surfactants SDS and AOT. J Colloid Interface Sci. 2005;288(2):496-502.
  • 21. Montes-Hernandez G, Renard F. Co-utilisation of alkaline solid waste and compressed-or-supercritical CO2 to produce calcite and calcite/Se0 red nanocomposite. The Journal of Supercritical Fluids. 2011;56(1):48-55.
  • 22. Lin R-y, Zhang J-y, Bai Y-q. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • 23. Chibowski E, Holysz L, Wojcik W. Changes in Zeta-Potential and Surface Free-Energy of Calcium-Carbonate Due to Exposure to Radiofrequency Electric-Field. Colloid Surface A. 1994;92(1-2):79-85.
  • 24. Chibowski E, Hotysz L, Szczes A. Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloid Surface A. 2003;222(1-3):41-54.
  • 25. Kes M. Determination of the particle interactions - rheology- surface roughness relationshipmfor dental ceramics [M.S]. İzmir: İzmir Institute of Technology; 2007.
  • 26. Kilic S, Toprak G, Ozdemir E. Stability of CaCO3 in Ca(OH)(2) solution. Int J Miner Process. 2016;147:1-9.
  • 27. Ulkeryildiz E, Kilic S, Ozdemir E. Rice-like hollow nano-CaCO3 synthesis. Journal of Crystal Growth. 2016;450:174-80.
  • 28. Ulkeryildiz E, Kilic S, Ozdemir E. Nano-CaCO3 synthesis by jet flow. Colloid Surface A. 2017;512:34-40.
  • 29. Carmona JG, Morales JG, Rodriguez-Clemente R. Rhombohedral-scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)(2)-CO2-H2O. J Colloid Interf Sci. 2003;261(2):434-40.
  • 30. Carmona JG, Morales JG, Sainz JF, Loste E, Clemente RR. The mechanism of precipitation of chain-like calcite. Journal of Crystal Growth. 2004;262(1-4):479-89.
  • 31. Johannsen K, Rademacher S. Modelling the Kinetics of Calcium Hydroxide Dissolution in Water. Acta Hydrochimica Et Hydrobiologica. 1999;27(2):72-8.
  • 32. Ozdemir E. Biomimetic CO2 Sequestration: 1. Immobilization of Carbonic Anhydrase within Polyurethane Foam. Energ Fuel. 2009;23:5725-30.
  • 33. Xu AW, Ma YR, Colfen H. Biomimetic mineralization. J Mater Chem. 2007;17(5):415-49.
  • 34. Gunasekaran S, Anbalagan G. Spectroscopic study of phase transitions in natural calcite mineral. Spectrochim Acta A. 2008;69(4):1246-51.
  • 35. Montes-Hernandez G, Fernández-Martínez A, Charlet L, Tisserand D, Renard F. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. Journal of Crystal Growth. 2008;310(11):2946-53.
  • 36. Carmona JG, Morales JG, Sainz JF, Clemente RR. Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives. Powder Technol. 2003;130(1-3):307-15.
  • 37. Jung WM, Kang SH, Kim W-S, Choi CK. Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor. Chemical Engineering Science. 2000;55(4):733-47.
  • 38. Burns JR, Jachuck JJ. Monitoring of CaCO3 production on a spinning disc reactor using conductivity measurements. Aiche J. 2005;51(5):1497-507.
  • 39. Lin RY, Zhang JY, Bai YQ. Mass transfer of reactive crystallization in synthesizing calcite nanocrystal. Chemical Engineering Science. 2006;61(21):7019-28.
  • 40. Takemura F, Matsumoto Y. Dissolution rate of spherical carbon dioxide bubbles in strong alkaline solutions. Chemical Engineering Science. 2000;55(18):3907-17.
  • 41. Molva M, Kilic S, Ozdemir E. Effect of carbonic anhydrase on CaCO3 crystallization in alkaline solution. Energ Fuel. 2016;30(12):10686-95. 42. Rodriguez-Blanco JD, Shaw S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale. 2011;3(1):265-71.
  • 43. Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J Alloy Compd. 2012;536:S477-S9.
  • 44. Tai CY, Chen FB. Polymorphism of CaCO3 precipitated in a constant-composition environment. Aiche J. 1998;44(8):1790-8.
There are 43 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Sevgi Kilic

Publication Date January 1, 2018
Submission Date December 26, 2017
Acceptance Date July 12, 2018
Published in Issue Year 2018

Cite

Vancouver Kilic S. Stable Nano Calcite Synthesis. JOTCSA. 2018;5(2):869-80.