Research Article
BibTex RIS Cite

Nicotinamide-Modified poly(HEMA-GMA)-Nic Cryogels for Removal of Pesticides

Year 2018, , 941 - 952, 01.01.2018
https://doi.org/10.18596/jotcsa.394592

Abstract

Chlordane is only one of the persistent pesticides used
in some countries despite the ban. Removal of chlordane, a severe threat to all living things, was
performed using nicotinamide-modified poly (2-hydroxyethyl
methacrylate-glycidyl methacrylate), poly(HEMA-GMA)-Nic, polymeric cryogels in this study. Pesticides are
practically insoluble in water. For that reason, ethanol is used as a solvent
which is not chemically dangerous and easily accessible in every laboratory. As
an adsorbent, poly (HEMA-GMA) polymeric cryogels
previously synthesized in the literature have been modified using nicotinamide.
The modification of poly(HEMA-GMA) with nicotinamide is the first in the literature. Removal of chlordane in alcohol
medium has been accomplished exploiting
the alcoho-phobic interaction, which was
the first indication in our previous study. Structural analysis of poly(HEMA-GMA)-Nic
was performed using Fourier transform infrared spectroscopy (FT-IR) and
elemental analysis methods. Scanning electron
microscopy (SEM) was used to understand
the surface morphology of cryogels. Surface area and cavity volume calculations
were determined by applying N2
adsorption method and swelling test. The interaction time and maximum
adsorption capacity were identified as 5
minutes and 64.61 mg chlordane/g cryogel
for 300 mg/L chlordane concentration and 108.818 mg chlordane/g cryogel for 800 mg/L chlordane concentration during
the adsorption experiments. Cyclohexane, toluene, chloroform, dichloromethane,
acetone, and acetonitrile were used as
solvent to observe the solvent effect on adsorption of chlordane onto the
polymeric material. As expected, the removal of chlordane was performed with the highest adsorption
performance in cyclohexane with the lowest dielectric constant.

References

  • 1. Xiao P, Mori T, Kondo R. Biotransformation of the organochlorine pesticide trans-chlordane by wood-rot fungi. New biotechnology. 2011;29(1):107-15.
  • 2. Dearth MA, Hites RA. Highly chlorinated dimethanofluorenes in technical chlordane and in human adipose tissue. Journal of the American Society for Mass Spectrometry. 1990;1(1):99-103.
  • 3. Hirano T, Ishida T, Oh K, Sudo R. Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere. 2007;67(3):428-34.
  • 4. Eitzer BD, Mattina MI, Iannucci‐Berger W. Compositional and chiral profiles of weathered chlordane residues in soil. Environmental toxicology and chemistry. 2001;20(10):2198-204.
  • 5. Ouyang Y, Ou L-T, Sigua G. Characterization of the pesticide chlordane in estuarine river sediments. Journal of environmental quality. 2005;34(2):544-51.
  • 6. Taguchi S, Yakushiji T. Influence of termite treatment in the home on the chlordane concentration in human milk. Arch Environ Con Tox. 1988;17(1):65-71.
  • 7. Janouskova E, Krbuskova M, Rehurkova I, Klimova M, Prokes L, Ruprich J. Determination of chlordane in foods by gas chromatography. Food chemistry. 2005;93(1):161-9.
  • 8. Council NR. An assessment of the health risks of seven pesticides used for termite control. 1982.
  • 9. Combarnous Y. Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus Biologies. 2017;340(9):406-9.
  • 10. Yadav IC, Devi NL, Li J, Zhang G, Breivik K. Possible emissions of POPs in plain and hilly areas of Nepal: implications for source apportionment and health risk assessment. Environmental pollution. 2017;220:1289-300.
  • 11. Goldner WS, Sandler DP, Yu F, Hoppin JA, Kamel F, LeVan TD. Pesticide use and thyroid disease among women in the Agricultural Health Study. American journal of epidemiology. 2010;171(4):455-64.
  • 12. Shindell S, Ulrich S. Mortality of workers employed in the manufacture of chlordane: an update. Journal of occupational medicine: official publication of the Industrial Medical Association. 1986;28(7):497-501.
  • 13. MacMahon B, Monson RR, Wang HH, Zheng T. A second follow-up of mortality in a cohort of pesticide applicators. Journal of occupational medicine: official publication of the Industrial Medical Association. 1988;30(5):429-32.
  • 14. Everett CJ, Matheson EM. Biomarkers of pesticide exposure and diabetes in the 1999–2004 National Health and Nutrition Examination Survey. Environment international. 2010;36(4):398-401.
  • 15. Wu X, Lam JC, Xia C, Kang H, Xie Z, Lam PK. Atmospheric concentrations of DDTs and chlordanes measured from Shanghai, China to the Arctic Ocean during the Third China Arctic Research Expedition in 2008. Atmospheric environment. 2011;45(22):3750-7.
  • 16. Vorkamp K, Møller S, Falk K, Rigét FF, Thomsen M, Sørensen PB. Levels and trends of toxaphene and chlordane-related pesticides in peregrine falcon eggs from South Greenland. Science of the Total Environment. 2014;468:614-21.
  • 17. Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere. 2017;173:359-67.
  • 18. Man YB, Chow KL, Cheng Z, Kang Y, Wong MH. Profiles and removal efficiency of organochlorine pesticides with emphasis on DDTs and HCHs by two different sewage treatment works. Environmental Technology & Innovation. 2017.
  • 19. Kida M, Ziembowicz S, Koszelnik P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Separation and Purification Technology. 2018;192:457-64.
  • 20. Kim S, Chu KH, Al-Hamadani YA, Park CM, Jang M, Kim D-H, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chemical Engineering Journal. 2017.
  • 21. Yamada S, Naito Y, Funakawa M, Nakai S, Hosomi M. Photodegradation fates of cis-chlordane, trans-chlordane, and heptachlor in ethanol. Chemosphere. 2008;70(9):1669-75.
  • 22. Cuozzo SA, Fuentes MS, Bourguignon N, Benimeli CS, Amoroso MJ. Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. Int Biodeter Biodegr. 2012;66(1):19-24.
  • 23. Fang Y, Nie Z, Die Q, Tian Y, Liu F, He J, et al. Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in southwestern China: Concentration, transmission, and risk evaluation. Chemosphere. 2017;178:340-9.
  • 24. Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: Morphological, structural and adsorption characterisation. Advances in Colloid and Interface Science. 2013;187-188:1-46.
  • 25. Erol K. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly (HEMA-GMA) Cryogels. Journal of the Turkish Chemical Society, Section A: Chemistry. 2017;4(1):133-48.
  • 26. Erol K. Polychelated cryogels: hemoglobin adsorption from human blood. Artificial cells, nanomedicine, and biotechnology. 2017;45(1):31-8.
  • 27. Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. Journal of Macromolecular Science, Part A. 2017;54(11):867-75.
  • 28. Kose K, Denizli A. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for lysozyme purification from chicken egg white. Artificial Cells Nanomedicine and Biotechnology. 2013;41(1):13-20.
  • 29. Yilmaz F, Kose K, Sari MM, Demirel G, Uzun L, Denizli A. Bioinspired surface modification of poly(2-hydroxyethyl methacrylate) based microbeads via oxidative polymerization of dopamine. Colloid Surface B. 2013;109:176-82.
  • 30. Kose K, Erol K, Emniyet AA, Kose DA, Avci GA, Uzun L. Fe(II)-Co(II) Double Salt Incorporated Magnetic Hydrophobic Microparticles for Invertase Adsorption. Applied Biochemistry and Biotechnology. 2015;177(5):1025-39.
  • 31. Kose K. Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem. 2016;51(10):1644-9.
  • 32. Kose K. Characterization of Magnetic Polymeric Microparticles. Journal of the Turkish Chemical Society, Section A: Chemistry. 2016;3(3):185-204.
  • 33. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003;21(10):445-51.
  • 34. Bayramoğlu G, Yalçın E, Arıca MY. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly (hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005;264(1-3):195-202.
  • 35. Gore RC, Hannah RW, Pattacini SC, Porro TJ. Infrared and ultraviolet spectra of seventy-six pesticides. Journal of the Association of Official Analytical Chemists. 1971;54(5):1040-82.
  • 36. Doğan A, Özkara S, Sarı MM, Uzun L, Denizli A. Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system. J Chromatogr B. 2012;893-894(Supplement C):69-76.
  • 37. Akduman B, Uygun M, Uygun DA, Akgöl S, Denizli A. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels. Materials Science and Engineering: C. 2013;33(8):4842-8.
  • 38. Ramalingam S, Periandy S, Govindarajan M, Mohan S. FT-IR and FT-Raman vibrational spectra and molecular structure investigation of nicotinamide: A combined experimental and theoretical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;75(5):1552-8.
  • 39. Erol K, Kose K, Kose DA, Sizir U, Satir IT, Uzun L. Adsorption of Victoria Blue R (VBR) dye on magnetic microparticles containing Fe(II)-Co(II) double salt. Desalin Water Treat. 2016;57(20):9307-17.
  • 40. Köse K, Köse DA. Removal of DDE by exploiting the alcoho-phobic interactions. Environmental Science and Pollution Research. 2017;24(10):9187-93.41. Lalah JO, Njogu S, Wandiga S. The effects of Mn 2+, Ni 2+, Cu 2+, Co 2+ and Zn 2+ ions on pesticide adsorption and mobility in a tropical soil. Bulletin of environmental contamination and toxicology. 2009;83(3):352-8.
  • 42. Kose K, Kose DA. Removal of DDE by exploiting the alcoho-phobic interactions. Environ Sci Pollut Res Int. 2017;24(10):9187-93.
  • 43. Perrin DD. Ionisation constants of inorganic acids and bases in aqueous solution: Elsevier; 2016.
  • 44. Dobbs RA, Cohen JM. Carbon adsorption isotherms for toxic organics: Municipal Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency; 1980.
  • 45. Murray R, Phillips P, Bender J. Degradation of pesticides applied to banana farm soil: comparison of indigenous bacteria and a microbial mat. Environmental toxicology and chemistry. 1997;16(1):84-90.
  • 46. Tomlin C. The e-Pesticide manual: a world compendium, 11th edn., Version 1.1, Farnham. British Crop Protection Council. 1999.
  • 47. Worthing CR, Walker SB, Flores G, Hilje L, Mora G, Carballo M. The Pesticide Manual, A World Compendium. The British Crop Protection Council. Londres (RU). 1987.
  • 48. Maryott AA, Smith ER. Table of dielectric constants of pure liquids. National Bureau of Standards Gaithersburg MD; 1951.
  • 49. Paruta AN, Sciarrone BJ, Lordi NG. Correlation between solubility parameters and dielectric constants. Journal of pharmaceutical sciences. 1962;51(7):704-5.
  • 50. Levet A, Bordes C, Clément Y, Mignon P, Chermette H, Marote P, et al. Quantitative structure–activity relationship to predict acute fish toxicity of organic solvents. Chemosphere. 2013;93(6):1094-103.
Year 2018, , 941 - 952, 01.01.2018
https://doi.org/10.18596/jotcsa.394592

Abstract

References

  • 1. Xiao P, Mori T, Kondo R. Biotransformation of the organochlorine pesticide trans-chlordane by wood-rot fungi. New biotechnology. 2011;29(1):107-15.
  • 2. Dearth MA, Hites RA. Highly chlorinated dimethanofluorenes in technical chlordane and in human adipose tissue. Journal of the American Society for Mass Spectrometry. 1990;1(1):99-103.
  • 3. Hirano T, Ishida T, Oh K, Sudo R. Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere. 2007;67(3):428-34.
  • 4. Eitzer BD, Mattina MI, Iannucci‐Berger W. Compositional and chiral profiles of weathered chlordane residues in soil. Environmental toxicology and chemistry. 2001;20(10):2198-204.
  • 5. Ouyang Y, Ou L-T, Sigua G. Characterization of the pesticide chlordane in estuarine river sediments. Journal of environmental quality. 2005;34(2):544-51.
  • 6. Taguchi S, Yakushiji T. Influence of termite treatment in the home on the chlordane concentration in human milk. Arch Environ Con Tox. 1988;17(1):65-71.
  • 7. Janouskova E, Krbuskova M, Rehurkova I, Klimova M, Prokes L, Ruprich J. Determination of chlordane in foods by gas chromatography. Food chemistry. 2005;93(1):161-9.
  • 8. Council NR. An assessment of the health risks of seven pesticides used for termite control. 1982.
  • 9. Combarnous Y. Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus Biologies. 2017;340(9):406-9.
  • 10. Yadav IC, Devi NL, Li J, Zhang G, Breivik K. Possible emissions of POPs in plain and hilly areas of Nepal: implications for source apportionment and health risk assessment. Environmental pollution. 2017;220:1289-300.
  • 11. Goldner WS, Sandler DP, Yu F, Hoppin JA, Kamel F, LeVan TD. Pesticide use and thyroid disease among women in the Agricultural Health Study. American journal of epidemiology. 2010;171(4):455-64.
  • 12. Shindell S, Ulrich S. Mortality of workers employed in the manufacture of chlordane: an update. Journal of occupational medicine: official publication of the Industrial Medical Association. 1986;28(7):497-501.
  • 13. MacMahon B, Monson RR, Wang HH, Zheng T. A second follow-up of mortality in a cohort of pesticide applicators. Journal of occupational medicine: official publication of the Industrial Medical Association. 1988;30(5):429-32.
  • 14. Everett CJ, Matheson EM. Biomarkers of pesticide exposure and diabetes in the 1999–2004 National Health and Nutrition Examination Survey. Environment international. 2010;36(4):398-401.
  • 15. Wu X, Lam JC, Xia C, Kang H, Xie Z, Lam PK. Atmospheric concentrations of DDTs and chlordanes measured from Shanghai, China to the Arctic Ocean during the Third China Arctic Research Expedition in 2008. Atmospheric environment. 2011;45(22):3750-7.
  • 16. Vorkamp K, Møller S, Falk K, Rigét FF, Thomsen M, Sørensen PB. Levels and trends of toxaphene and chlordane-related pesticides in peregrine falcon eggs from South Greenland. Science of the Total Environment. 2014;468:614-21.
  • 17. Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS. Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere. 2017;173:359-67.
  • 18. Man YB, Chow KL, Cheng Z, Kang Y, Wong MH. Profiles and removal efficiency of organochlorine pesticides with emphasis on DDTs and HCHs by two different sewage treatment works. Environmental Technology & Innovation. 2017.
  • 19. Kida M, Ziembowicz S, Koszelnik P. Removal of organochlorine pesticides (OCPs) from aqueous solutions using hydrogen peroxide, ultrasonic waves, and a hybrid process. Separation and Purification Technology. 2018;192:457-64.
  • 20. Kim S, Chu KH, Al-Hamadani YA, Park CM, Jang M, Kim D-H, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chemical Engineering Journal. 2017.
  • 21. Yamada S, Naito Y, Funakawa M, Nakai S, Hosomi M. Photodegradation fates of cis-chlordane, trans-chlordane, and heptachlor in ethanol. Chemosphere. 2008;70(9):1669-75.
  • 22. Cuozzo SA, Fuentes MS, Bourguignon N, Benimeli CS, Amoroso MJ. Chlordane biodegradation under aerobic conditions by indigenous Streptomyces strains. Int Biodeter Biodegr. 2012;66(1):19-24.
  • 23. Fang Y, Nie Z, Die Q, Tian Y, Liu F, He J, et al. Organochlorine pesticides in soil, air, and vegetation at and around a contaminated site in southwestern China: Concentration, transmission, and risk evaluation. Chemosphere. 2017;178:340-9.
  • 24. Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: Morphological, structural and adsorption characterisation. Advances in Colloid and Interface Science. 2013;187-188:1-46.
  • 25. Erol K. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly (HEMA-GMA) Cryogels. Journal of the Turkish Chemical Society, Section A: Chemistry. 2017;4(1):133-48.
  • 26. Erol K. Polychelated cryogels: hemoglobin adsorption from human blood. Artificial cells, nanomedicine, and biotechnology. 2017;45(1):31-8.
  • 27. Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. Journal of Macromolecular Science, Part A. 2017;54(11):867-75.
  • 28. Kose K, Denizli A. Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for lysozyme purification from chicken egg white. Artificial Cells Nanomedicine and Biotechnology. 2013;41(1):13-20.
  • 29. Yilmaz F, Kose K, Sari MM, Demirel G, Uzun L, Denizli A. Bioinspired surface modification of poly(2-hydroxyethyl methacrylate) based microbeads via oxidative polymerization of dopamine. Colloid Surface B. 2013;109:176-82.
  • 30. Kose K, Erol K, Emniyet AA, Kose DA, Avci GA, Uzun L. Fe(II)-Co(II) Double Salt Incorporated Magnetic Hydrophobic Microparticles for Invertase Adsorption. Applied Biochemistry and Biotechnology. 2015;177(5):1025-39.
  • 31. Kose K. Nucleotide incorporated magnetic microparticles for isolation of DNA. Process Biochem. 2016;51(10):1644-9.
  • 32. Kose K. Characterization of Magnetic Polymeric Microparticles. Journal of the Turkish Chemical Society, Section A: Chemistry. 2016;3(3):185-204.
  • 33. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B. Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003;21(10):445-51.
  • 34. Bayramoğlu G, Yalçın E, Arıca MY. Characterization of polyethylenimine grafted and Cibacron Blue F3GA immobilized poly (hydroxyethylmethacrylate-co-glycydylmethacrylate) membranes and application to bilirubin removal from human serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2005;264(1-3):195-202.
  • 35. Gore RC, Hannah RW, Pattacini SC, Porro TJ. Infrared and ultraviolet spectra of seventy-six pesticides. Journal of the Association of Official Analytical Chemists. 1971;54(5):1040-82.
  • 36. Doğan A, Özkara S, Sarı MM, Uzun L, Denizli A. Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system. J Chromatogr B. 2012;893-894(Supplement C):69-76.
  • 37. Akduman B, Uygun M, Uygun DA, Akgöl S, Denizli A. Purification of yeast alcohol dehydrogenase by using immobilized metal affinity cryogels. Materials Science and Engineering: C. 2013;33(8):4842-8.
  • 38. Ramalingam S, Periandy S, Govindarajan M, Mohan S. FT-IR and FT-Raman vibrational spectra and molecular structure investigation of nicotinamide: A combined experimental and theoretical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2010;75(5):1552-8.
  • 39. Erol K, Kose K, Kose DA, Sizir U, Satir IT, Uzun L. Adsorption of Victoria Blue R (VBR) dye on magnetic microparticles containing Fe(II)-Co(II) double salt. Desalin Water Treat. 2016;57(20):9307-17.
  • 40. Köse K, Köse DA. Removal of DDE by exploiting the alcoho-phobic interactions. Environmental Science and Pollution Research. 2017;24(10):9187-93.41. Lalah JO, Njogu S, Wandiga S. The effects of Mn 2+, Ni 2+, Cu 2+, Co 2+ and Zn 2+ ions on pesticide adsorption and mobility in a tropical soil. Bulletin of environmental contamination and toxicology. 2009;83(3):352-8.
  • 42. Kose K, Kose DA. Removal of DDE by exploiting the alcoho-phobic interactions. Environ Sci Pollut Res Int. 2017;24(10):9187-93.
  • 43. Perrin DD. Ionisation constants of inorganic acids and bases in aqueous solution: Elsevier; 2016.
  • 44. Dobbs RA, Cohen JM. Carbon adsorption isotherms for toxic organics: Municipal Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency; 1980.
  • 45. Murray R, Phillips P, Bender J. Degradation of pesticides applied to banana farm soil: comparison of indigenous bacteria and a microbial mat. Environmental toxicology and chemistry. 1997;16(1):84-90.
  • 46. Tomlin C. The e-Pesticide manual: a world compendium, 11th edn., Version 1.1, Farnham. British Crop Protection Council. 1999.
  • 47. Worthing CR, Walker SB, Flores G, Hilje L, Mora G, Carballo M. The Pesticide Manual, A World Compendium. The British Crop Protection Council. Londres (RU). 1987.
  • 48. Maryott AA, Smith ER. Table of dielectric constants of pure liquids. National Bureau of Standards Gaithersburg MD; 1951.
  • 49. Paruta AN, Sciarrone BJ, Lordi NG. Correlation between solubility parameters and dielectric constants. Journal of pharmaceutical sciences. 1962;51(7):704-5.
  • 50. Levet A, Bordes C, Clément Y, Mignon P, Chermette H, Marote P, et al. Quantitative structure–activity relationship to predict acute fish toxicity of organic solvents. Chemosphere. 2013;93(6):1094-103.
There are 49 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Kazım Köse 0000-0003-1467-2898

Gönül Arslan Akveran This is me

Kadir Erol

Dursun Ali Köse 0000-0003-4767-6799

Publication Date January 1, 2018
Submission Date February 14, 2018
Acceptance Date August 2, 2018
Published in Issue Year 2018

Cite

Vancouver Köse K, Arslan Akveran G, Erol K, Köse DA. Nicotinamide-Modified poly(HEMA-GMA)-Nic Cryogels for Removal of Pesticides. JOTCSA. 2018;5(2):941-52.