Research Article
BibTex RIS Cite
Year 2018, , 775 - 784, 01.01.2018
https://doi.org/10.18596/jotcsa.414821

Abstract

References

  • Reference1. Atahan A, Durmus S. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: selective synthesis and photophysical properties. Spectrochimica Acta A Molecular and Bio-molecular Spectroscopy. 2015 Jun 5;144:61-7.
  • Reference2. Orhan E, Gundogdu L, Kose M, Yokoyama Y. Synthesis and photochromic properties of 4,5-bisaryl-3(2H)-pyridazinones. Journal of Photochemistry and Photobiology A: Chemistry. 2016;314:164–170.
  • Reference3. Yoon SA, Lee J, Lee MH. A ratiometric fluorescent probe for Zn2+ based on pyrene- appended naphthalimide-dipicolylamine. Sensors and Actuators B. 2018;258:50-5.
  • Reference4. Ulla H, Kiran MR, Garudachari B, Satyanarayan MN, Umesh G, Isloor AM. Blue emitting halogen–phenoxy substituted 1,8-naphthalimides for potential organic light emitting diode applications. Optical Materials. 2014;37:311-21.
  • Reference5. Li ZZ, Niu CG, Zeng GM, Liu YG, Gao PF, Huang GH, Mao YA. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene. Sensors and Actuators B. 2006;114:308-15.
  • Reference6. Simas ER, Gehlen MH, Pinto MFS, Siqueira J, Misoguti L. Intrachain Energy Migration to Weak Charge-Transfer State in Polyfluorene End-Capped with Naphthalimide Derivative. Journal of Physical Chemistry A. 2010;114:12384–90.
  • Reference7. Cao H, Chang V, Hernandez R, and Heagy M D. Matrix Screening of Substituted N-Aryl-1,8-naphthalimides Reveals New Dual Fluorescent Dyes and Unusually Bright Pyridine Derivatives. Journal of Organic Chemistry. 2005;70:4929-34.
  • Reference8. Liu J, Qian Y. A novel naphthalimide-rhodamine dye: Intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes and Pigments. 2017;136:782-90.
  • Reference9. Singh A, Raj T, Singh N. Highly Selective and Efficient Reduction of Nitroarenes by Imidazolium Salt Stabilized Copper Nanoparticles inAqueous Medium. Catalysis Letters 2015;145:1606-11.
  • Reference10. Ma Y, Zheng B, Zhao Y, Yuan H, Cai Y, Du Ć, Xiao D. A sensitive and selective chemosensor for GSSG detection based on the recovered fluorescence of NDPA-Fe3O4@SiO2-Cu(II) nanomaterial. Biosensors and Bioelectronics. 2013;48:138-44.
  • Reference11. Liu X, Zhang S Q, Wei X, Yang T, Chen M L, Wang J H. A novel “modularized” optical sensor for pH monitoring in biological matrixes. Biosensors and Bioelectronics. 2018;109:150–5.
  • Reference12. Niua W, Weia Z, Jia J, Shuang S, Dong C, Yun K. A ratiometric emission NIR-fluorescent probe for sensing and imaging pH changes in live cells. Dyes and Pigments. 2018; 152:155-160.
  • Reference13. Chen Y, Tang T, Chen Y, Xu D. Novel 1,8 naphthalimide dye for multichannel sensing of H+ and Cu2+. Research on Chemical Intermediates. 2018;44:2379-93.
  • Reference14. Zhang Y, Li S, and Zhao Z. Using Nanoliposomes To Construct a FRET-Based Ratiometric Fluorescent Probe for Sensing Intracellular pH Values. Analytical Chemistry. 2016;88:12380-5.
  • Reference15. Yang L, Li N, Pan W, Yu Z, Tang B. Real-Time Imaging of Mitochondrial Hydrogen Peroxide and pH Fluctuations in Living Cells Using a Fluorescent Nanosensor. Analytical Chemistry. 2015;87(7):3678-84.
  • Reference16. Zhou X, Su F, Lu H, Senechal-Willis P, Tian Y, Johnson R H, Meldrum D R. An FRET-based ratiometric chemosensor for in vitro cellular fluorescence analyses of pH. Biomaterials. 2012;33:171-80.
  • Reference17. Al-Aqar R, Atahan A, Benniston AC, Perks T, Waddell PG, Harriman A. Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry: A European Journal. 2016;22:15420-9.
  • Reference18. Yang W, He G, Mei S, Zhu J, Zhang W, Chen Q, Zhang G, Guo R. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield. Applied Surface Science 2017;423:686-94. Reference19. Olmsted J. Calorimetric Determinations of Absolute Fluorescence Quantum Yields. Journal of Physical Chemistry. 1979;83:2581-4.
  • Reference20. Georgiev NI, Dimov SM, Asiri AM, Alamry KA, Obaid AY, Bojinov VB. Synthesis, selective pH-sensing activity and logic behavior of highly water-soluble 1,8-naphthalimide and dihydroimidazo naphthalimide derivatives. Journal of Luminescence. 2014;149:325-32.
  • Reference21. Britton HTS, Robinson RA. Universal buffer solutions and the dissociation constant of veronal Journal of the Chemical Society. 1931;0:1456-62.
  • Reference22. Schab-Balcerzak E, Siwy M, Filapek M, Kula S, Malecki G, Laba K, Lapkowski M, Janeczek H, Domanski M. New core-substituted with electron-donating group 1,8-naphthalimides towards optoelectronic applications. Journal of Luminescence. 2015;166:22-39.

Photophysics, pH Sensing and Hydrolysis Study of a Novel 1,8-Naphthalimide Derivative

Year 2018, , 775 - 784, 01.01.2018
https://doi.org/10.18596/jotcsa.414821

Abstract

In this study, a novel highly emissive compound
was synthesized via two steps synthetic procedure and characterized by
1H-NMR,
13C-NMR and FTIR. Then its photophysical properties, pH sensing behaviours
and pH-dependent hydrolysis were systematically investigated by ultraviolet and
fluorescence spectroscopy. Photophysics studies were carried out in fourteen
common organic solvents and absorption/emission spectra were recorded in
Britton Robinson buffers (pH=3-12) to determine pH sensing behaviours. From
the photophysical results, it has been shown that the novel compound exhibits
strongly solvent polarity dependent emission and has high quantum yield (up to
0.72). Furthermore, at pH=12, absorbance started to decrease while emission was
increasing and blue-shifting due to basic hydrolysis after a several minutes. Therefore,
time dependent hydrolysis was also investigated at mentioned pH. 

References

  • Reference1. Atahan A, Durmus S. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: selective synthesis and photophysical properties. Spectrochimica Acta A Molecular and Bio-molecular Spectroscopy. 2015 Jun 5;144:61-7.
  • Reference2. Orhan E, Gundogdu L, Kose M, Yokoyama Y. Synthesis and photochromic properties of 4,5-bisaryl-3(2H)-pyridazinones. Journal of Photochemistry and Photobiology A: Chemistry. 2016;314:164–170.
  • Reference3. Yoon SA, Lee J, Lee MH. A ratiometric fluorescent probe for Zn2+ based on pyrene- appended naphthalimide-dipicolylamine. Sensors and Actuators B. 2018;258:50-5.
  • Reference4. Ulla H, Kiran MR, Garudachari B, Satyanarayan MN, Umesh G, Isloor AM. Blue emitting halogen–phenoxy substituted 1,8-naphthalimides for potential organic light emitting diode applications. Optical Materials. 2014;37:311-21.
  • Reference5. Li ZZ, Niu CG, Zeng GM, Liu YG, Gao PF, Huang GH, Mao YA. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1,8-napthalimide and benzothioxanthene. Sensors and Actuators B. 2006;114:308-15.
  • Reference6. Simas ER, Gehlen MH, Pinto MFS, Siqueira J, Misoguti L. Intrachain Energy Migration to Weak Charge-Transfer State in Polyfluorene End-Capped with Naphthalimide Derivative. Journal of Physical Chemistry A. 2010;114:12384–90.
  • Reference7. Cao H, Chang V, Hernandez R, and Heagy M D. Matrix Screening of Substituted N-Aryl-1,8-naphthalimides Reveals New Dual Fluorescent Dyes and Unusually Bright Pyridine Derivatives. Journal of Organic Chemistry. 2005;70:4929-34.
  • Reference8. Liu J, Qian Y. A novel naphthalimide-rhodamine dye: Intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes and Pigments. 2017;136:782-90.
  • Reference9. Singh A, Raj T, Singh N. Highly Selective and Efficient Reduction of Nitroarenes by Imidazolium Salt Stabilized Copper Nanoparticles inAqueous Medium. Catalysis Letters 2015;145:1606-11.
  • Reference10. Ma Y, Zheng B, Zhao Y, Yuan H, Cai Y, Du Ć, Xiao D. A sensitive and selective chemosensor for GSSG detection based on the recovered fluorescence of NDPA-Fe3O4@SiO2-Cu(II) nanomaterial. Biosensors and Bioelectronics. 2013;48:138-44.
  • Reference11. Liu X, Zhang S Q, Wei X, Yang T, Chen M L, Wang J H. A novel “modularized” optical sensor for pH monitoring in biological matrixes. Biosensors and Bioelectronics. 2018;109:150–5.
  • Reference12. Niua W, Weia Z, Jia J, Shuang S, Dong C, Yun K. A ratiometric emission NIR-fluorescent probe for sensing and imaging pH changes in live cells. Dyes and Pigments. 2018; 152:155-160.
  • Reference13. Chen Y, Tang T, Chen Y, Xu D. Novel 1,8 naphthalimide dye for multichannel sensing of H+ and Cu2+. Research on Chemical Intermediates. 2018;44:2379-93.
  • Reference14. Zhang Y, Li S, and Zhao Z. Using Nanoliposomes To Construct a FRET-Based Ratiometric Fluorescent Probe for Sensing Intracellular pH Values. Analytical Chemistry. 2016;88:12380-5.
  • Reference15. Yang L, Li N, Pan W, Yu Z, Tang B. Real-Time Imaging of Mitochondrial Hydrogen Peroxide and pH Fluctuations in Living Cells Using a Fluorescent Nanosensor. Analytical Chemistry. 2015;87(7):3678-84.
  • Reference16. Zhou X, Su F, Lu H, Senechal-Willis P, Tian Y, Johnson R H, Meldrum D R. An FRET-based ratiometric chemosensor for in vitro cellular fluorescence analyses of pH. Biomaterials. 2012;33:171-80.
  • Reference17. Al-Aqar R, Atahan A, Benniston AC, Perks T, Waddell PG, Harriman A. Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry: A European Journal. 2016;22:15420-9.
  • Reference18. Yang W, He G, Mei S, Zhu J, Zhang W, Chen Q, Zhang G, Guo R. Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield. Applied Surface Science 2017;423:686-94. Reference19. Olmsted J. Calorimetric Determinations of Absolute Fluorescence Quantum Yields. Journal of Physical Chemistry. 1979;83:2581-4.
  • Reference20. Georgiev NI, Dimov SM, Asiri AM, Alamry KA, Obaid AY, Bojinov VB. Synthesis, selective pH-sensing activity and logic behavior of highly water-soluble 1,8-naphthalimide and dihydroimidazo naphthalimide derivatives. Journal of Luminescence. 2014;149:325-32.
  • Reference21. Britton HTS, Robinson RA. Universal buffer solutions and the dissociation constant of veronal Journal of the Chemical Society. 1931;0:1456-62.
  • Reference22. Schab-Balcerzak E, Siwy M, Filapek M, Kula S, Malecki G, Laba K, Lapkowski M, Janeczek H, Domanski M. New core-substituted with electron-donating group 1,8-naphthalimides towards optoelectronic applications. Journal of Luminescence. 2015;166:22-39.
There are 21 citations in total.

Details

Primary Language English
Subjects Electrochemistry
Journal Section Articles
Authors

Alparslan Atahan 0000-0001-8904-9377

Ersin Orhan 0000-0002-5461-1005

Publication Date January 1, 2018
Submission Date April 19, 2018
Acceptance Date May 6, 2018
Published in Issue Year 2018

Cite

Vancouver Atahan A, Orhan E. Photophysics, pH Sensing and Hydrolysis Study of a Novel 1,8-Naphthalimide Derivative. JOTCSA. 2018;5(2):775-84.