Research Article
BibTex RIS Cite

Ferulic Acid Substituted Zn(II) Phthalocyanine: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties

Year 2018, , 903 - 918, 01.01.2018
https://doi.org/10.18596/jotcsa.438111

Abstract

In this study, novel peripherally ferulic acid tetra-substituted
Zn(II) phthalocyanine was synthesized for the first time. The synthesized phthalocyanine
was characterized by elemental analysis, Infrared spectroscopy, UV-vis
spectroscopy, 1H-NMR spectroscopy and MALDI-TOF MS techniques. The photophysical,
photochemical and aggregation properties of this phthalocyanine were also investigated
in DMSO and DMF solvents. The aggregation studies showed that the synthesized
Zn(II) phthalocyanine has not aggregated in DMSO and DMF. Fluorescence quantum
yield (
ΦF: 0.23 in DMSO and 0.17 in
DMF), singlet oxygen quantum yield (
Φ:0.57 in DMSO and 0.45 in
DMF) and photodegradation quantum yield (
Φd:1.08x10-5 in DMSO and 4.48x10-5 in DMF) were also determined. These results show that the synthesized
phthalocyanine has potential use in photodynamic therapy.

References

  • 1. Leznoff CC, Lever ABP, Stuzhin P, Khelevina O, Berezin B. Phthalocyanines: properties and applications: VCH publishers; 1996.
  • 2. Gorduk S, Avciata O, Avciata U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta. 2018;471:137-47.
  • 3. Gottfried JM. Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep. 2015;70(3):259-379.
  • 4. Aktaş A, Acar I, Bıyıklıoğlu Z, Saka ET, Kantekin H. Synthesis, electrochemistry of metal-free, copper, titanium phthalocyanines and investigation of catalytic activity of cobalt, iron phthalocyanines on benzyl alcohol oxidation bearing 4-{2-[3-trifluoromethyl) phenoxy] ethoxy} groups. Synth Met. 2014;198:212-20.
  • 5. Durmuş M, Lebrun C, Ahsen V. Synthesis and characterization of novel liquid and liquid crystalline phthalocyanines. J Porphyrins Phthalocyanines. 2004;8(10):1175-86.
  • 6. Guillaud G, Simon J, Germain J. Metallophthalocyanines: Gas sensors, resistors and field effect transistors1. Coord Chem Rev. 1998;178:1433-84.
  • 7. Bouvet M. Radical phthalocyanines and intrinsic semiconduction. The Porphyrin Handbook: Elsevier; 2003. p. 37-103.
  • 8. Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines. 2010;14(09):759-92.
  • 9. Koyun Ö, Gördük S, Keskin B, Çetinkaya A, Koca A, Avcıata U. Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines bearing tetra terminal-alkynyl functionalities and click approach. Polyhedron. 2016;113:35-49.
  • 10. Karaca H, Kurt Z, Sezer S. Synthesis of Novel Chalcone Substituted Metallophthalocyanines: Electrochemistry, Spectroelectrochemistry, and Catalytic Oxidation of 2-mercaptoethanol. JOTCSA.5(2):701-18.
  • 11. Oluwole DO, Sarı FA, Prinsloo E, Dube E, Yuzer A, Nyokong T, İnce M. Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn(II) phthalocyanines. Spectrochimica Acta, Part A : Molecular and Biomolecular Spectroscopy. 2018;203:236-243.
  • 12.Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24(1):19-33.
  • 13. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature reviews cancer. 2003;3(5):380.
  • 14. Nas A, Dilber G, Durmuş M, Kantekin H. The influence of the various central metals on photophysical and photochemical properties of benzothiazole-substituted phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:55-62.
  • 15.Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines. 2001;5(02):105-29.
  • 16. Günsel A. Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium (III) Phthalocyanines Containing Oxygen/Sulfur Bridge. JOTCSA. 2017;5(1):269-82.
  • 17. Dumoulin F, Durmuş M, Ahsen V, Nyokong T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev. 2010;254(23-24):2792-847.
  • 18. Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, et al. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun. 2013;49(95):11149-51.
  • 19. Kliesch H, Weitemeyer A, Müller S, Wöhrle D. Synthesis of phthalocyanines with one sulfonic acid, carboxylic acid, or amino group. Liebigs Annalen. 1995;1995(7):1269-73.
  • 20. Opris DM, Nuesch F, Löwe C, Molberg M, Nagel M. Synthesis, characterization, and dielectric properties of phthalocyanines with ester and carboxylic acid functionalities. Chem Mater. 2008;20(21):6889-96.
  • 21. Sevim AM, Arıkan S, Koca A, Gül A. Synthesis and spectroelectrochemistry of new phthalocyanines with ester functionalities. Dyes and Pigments. 2012;92(3):1114-21.
  • 22. Tekdaş DA, Gürek AG, Ahsen V. Asymmetric zinc phthalocyanines substituted with a single carboxyl and triethyleneoxysulfonyl groups: synthesis, characterization and validation for photodynamic therapy. J Porphyrins Phthalocyanines. 2014;18(10-11):899-908.
  • 23. Verdree VT, Pakhomov S, Su G, Allen MW, Countryman AC, Hammer RP, et al. Water soluble metallo-phthalocyanines: the role of the functional groups on the spectral and photophysical properties. J Fluoresc. 2007;17(5):547-63.
  • 24. Liu W, Jensen TJ, Fronczek FR, Hammer RP, Smith KM, Vicente MGH. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines. J Med Chem. 2005;48(4):1033-41.
  • 25. Ke M-R, Huang J-D, Weng S-M. Comparison between non-peripherally and peripherally tetra-substituted zinc(II) phthalocyanines as photosensitizers: Synthesis, spectroscopic, photochemical and photobiological properties. J Photochem Photobiol A. 2009;201(1):23-31.
  • 26. Özgül G, Taştemel A, Özkaya AR, Bulut M. Synthesis, characterization and comparative electrochemistry of beta and alpha tetra-[4-oxy-3-methoxybenzoic acid]-substituted Zn(II), Co(II) and Cu(II) phthalocyanines. Polyhedron. 2015;85:181-89.
  • 27. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ. 1999;76(9):1260.
  • 28. Maree MD, Nyokong T, Suhling K, Phillips D. Effects of axial ligands on the photophysical properties of silicon octaphenoxyphthalocyanine. J Porphyrins Phthalocyanines. 2002;6(06):373-76.
  • 29. Ogunsipe A, Chen J-Y, Nyokong T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004;28(7):822-27.
  • 30. Gürol I, Durmuş M, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Transactions. 2007(34):3782-91.
  • 31. Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J Mol Struct. 2004;689(1-2):89-97.
  • 32. Perrin DD, Armarego W, Perrin DR. Purification of Laboratory Chemicals, by DD Perrin. WLF Armarego and Dawn R. Perrin: Pergamon Press; 1966.
  • 33. Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B, Schnurpfeil G. Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyrins Phthalocyanines. 1998;2(2):145-58.
  • 34. Brannon JH, Magde D. Picosecond laser photophysics. Group 3A phthalocyanines. JACS. 1980;102(1):62-65.
  • 35. Ogunsipe A, Nyokong T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A. 2005;173(2):211-20.
  • 36. Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T. Photochemical studies of tetra-2, 3-pyridinoporphyrazines. J Photochem Photobiol A. 2001;140(3):215-22.
  • 37. Gorduk S, Koyun O, Avciata O, Altindal A, Avciata U. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes. Journal of Chemistry. 2017;2017.
  • 38. Kadish KM, Smith KM, Guilard LR. The Porphyrin Handbook: Phthalocyanines: Properties and Materials. 2003. Academic Press.
  • 39. Jeong J, Kumar RS, Mergu N, Son Y-A. Photophysical, electrochemical, thermal and aggregation properties of new metal phthalocyanines. J Mol Struct. 2017;1147:469-79.
  • 40. Engelkamp H, Nolte RJ. Molecular materials based on crown ether functionalized phthalocyanines. J Porphyrins Phthalocyanines. 2000;4(05):454-59.
  • 41. Dominguez D, Snow A, Shirk J, Pong R. Polyethyleneoxide-capped phthalocyanines: limiting phthalocyanine aggregation to dimer formation. J Porphyrins Phthalocyanines. 2001;5(07):582-92.
  • 42. Sibrian-Vazquez M, Ortiz J, Nesterova IV, Fernández-Lázaro F, Sastre-Santos A, Soper SA, et al. Synthesis and properties of cell-targeted Zn(II)−phthalocyanine−peptide conjugates. Bioconjugate Chem. 2007;18(2):410-20.
  • 43. Ogunsipe A, Durmuş M, Atilla D, Gürek AG, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synth Met. 2008;158(21-24):839-47.
  • 44. Durmuş M, Nyokong T. The synthesis, fluorescence behaviour and singlet oxygen studies of new water-soluble cationic gallium (III) phthalocyanines. Inorg Chem Commun. 2007;10(3):332-38.
  • 45. Forster T, Hoffmann G. Viscosity dependence of fluorescent quantum yields of some dye systems. Zeitschrift Fur Physikalische Chemie-Frankfurt. 1971;75(1-2):63-&.
  • 46. Çakır V, Çakır D, Pişkin M, Durmuş M, Bıyıklıoğlu Z. New peripherally and non-peripherally tetra-substituted water soluble zinc phthalocyanines: synthesis, photophysics and photochemistry. J Organomet Chem. 2015;783:120-29.
  • 47. Durmuş M, Nyokong T. Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron. 2007;26(12):2767-76.
  • 48. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct. 2003;650(1-3):131-40.
  • 49. Maree SE, Nyokong T. Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J Porphyrins Phthalocyanines. 2001;5(11):782-92.
  • 50. Nyokong T, Antunes E. Photochemical and photophysical properties of metallophthalocyanines. Handbook of Porphyrin Science (Volume 7) With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine: World Scientific; 2010. p. 247-357.
  • 51. Durmuş M. Photochemical and photophysical characterization. Photosensitizers in medicine, environment, and security: Springer; 2011. p. 135-266.
  • 52. Albakour M, Tunç G, Akyol B, Kostakoğlu S T, Berber S, Bekaroğlu Ö, Gürek A G. Synthesis, characterization, photophysicochemical properties and theoretical study of novel zinc phthalocyanine containing four tetrathia macrocycles. J Porphyrins Phthalocyanines. 2018; 22(01n03): 77-87.
Year 2018, , 903 - 918, 01.01.2018
https://doi.org/10.18596/jotcsa.438111

Abstract

References

  • 1. Leznoff CC, Lever ABP, Stuzhin P, Khelevina O, Berezin B. Phthalocyanines: properties and applications: VCH publishers; 1996.
  • 2. Gorduk S, Avciata O, Avciata U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta. 2018;471:137-47.
  • 3. Gottfried JM. Surface chemistry of porphyrins and phthalocyanines. Surf Sci Rep. 2015;70(3):259-379.
  • 4. Aktaş A, Acar I, Bıyıklıoğlu Z, Saka ET, Kantekin H. Synthesis, electrochemistry of metal-free, copper, titanium phthalocyanines and investigation of catalytic activity of cobalt, iron phthalocyanines on benzyl alcohol oxidation bearing 4-{2-[3-trifluoromethyl) phenoxy] ethoxy} groups. Synth Met. 2014;198:212-20.
  • 5. Durmuş M, Lebrun C, Ahsen V. Synthesis and characterization of novel liquid and liquid crystalline phthalocyanines. J Porphyrins Phthalocyanines. 2004;8(10):1175-86.
  • 6. Guillaud G, Simon J, Germain J. Metallophthalocyanines: Gas sensors, resistors and field effect transistors1. Coord Chem Rev. 1998;178:1433-84.
  • 7. Bouvet M. Radical phthalocyanines and intrinsic semiconduction. The Porphyrin Handbook: Elsevier; 2003. p. 37-103.
  • 8. Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines. 2010;14(09):759-92.
  • 9. Koyun Ö, Gördük S, Keskin B, Çetinkaya A, Koca A, Avcıata U. Microwave-assisted synthesis, electrochemistry and spectroelectrochemistry of phthalocyanines bearing tetra terminal-alkynyl functionalities and click approach. Polyhedron. 2016;113:35-49.
  • 10. Karaca H, Kurt Z, Sezer S. Synthesis of Novel Chalcone Substituted Metallophthalocyanines: Electrochemistry, Spectroelectrochemistry, and Catalytic Oxidation of 2-mercaptoethanol. JOTCSA.5(2):701-18.
  • 11. Oluwole DO, Sarı FA, Prinsloo E, Dube E, Yuzer A, Nyokong T, İnce M. Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn(II) phthalocyanines. Spectrochimica Acta, Part A : Molecular and Biomolecular Spectroscopy. 2018;203:236-243.
  • 12.Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24(1):19-33.
  • 13. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nature reviews cancer. 2003;3(5):380.
  • 14. Nas A, Dilber G, Durmuş M, Kantekin H. The influence of the various central metals on photophysical and photochemical properties of benzothiazole-substituted phthalocyanines. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:55-62.
  • 15.Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines. 2001;5(02):105-29.
  • 16. Günsel A. Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium (III) Phthalocyanines Containing Oxygen/Sulfur Bridge. JOTCSA. 2017;5(1):269-82.
  • 17. Dumoulin F, Durmuş M, Ahsen V, Nyokong T. Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev. 2010;254(23-24):2792-847.
  • 18. Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, et al. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun. 2013;49(95):11149-51.
  • 19. Kliesch H, Weitemeyer A, Müller S, Wöhrle D. Synthesis of phthalocyanines with one sulfonic acid, carboxylic acid, or amino group. Liebigs Annalen. 1995;1995(7):1269-73.
  • 20. Opris DM, Nuesch F, Löwe C, Molberg M, Nagel M. Synthesis, characterization, and dielectric properties of phthalocyanines with ester and carboxylic acid functionalities. Chem Mater. 2008;20(21):6889-96.
  • 21. Sevim AM, Arıkan S, Koca A, Gül A. Synthesis and spectroelectrochemistry of new phthalocyanines with ester functionalities. Dyes and Pigments. 2012;92(3):1114-21.
  • 22. Tekdaş DA, Gürek AG, Ahsen V. Asymmetric zinc phthalocyanines substituted with a single carboxyl and triethyleneoxysulfonyl groups: synthesis, characterization and validation for photodynamic therapy. J Porphyrins Phthalocyanines. 2014;18(10-11):899-908.
  • 23. Verdree VT, Pakhomov S, Su G, Allen MW, Countryman AC, Hammer RP, et al. Water soluble metallo-phthalocyanines: the role of the functional groups on the spectral and photophysical properties. J Fluoresc. 2007;17(5):547-63.
  • 24. Liu W, Jensen TJ, Fronczek FR, Hammer RP, Smith KM, Vicente MGH. Synthesis and cellular studies of nonaggregated water-soluble phthalocyanines. J Med Chem. 2005;48(4):1033-41.
  • 25. Ke M-R, Huang J-D, Weng S-M. Comparison between non-peripherally and peripherally tetra-substituted zinc(II) phthalocyanines as photosensitizers: Synthesis, spectroscopic, photochemical and photobiological properties. J Photochem Photobiol A. 2009;201(1):23-31.
  • 26. Özgül G, Taştemel A, Özkaya AR, Bulut M. Synthesis, characterization and comparative electrochemistry of beta and alpha tetra-[4-oxy-3-methoxybenzoic acid]-substituted Zn(II), Co(II) and Cu(II) phthalocyanines. Polyhedron. 2015;85:181-89.
  • 27. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ. 1999;76(9):1260.
  • 28. Maree MD, Nyokong T, Suhling K, Phillips D. Effects of axial ligands on the photophysical properties of silicon octaphenoxyphthalocyanine. J Porphyrins Phthalocyanines. 2002;6(06):373-76.
  • 29. Ogunsipe A, Chen J-Y, Nyokong T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004;28(7):822-27.
  • 30. Gürol I, Durmuş M, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Transactions. 2007(34):3782-91.
  • 31. Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J Mol Struct. 2004;689(1-2):89-97.
  • 32. Perrin DD, Armarego W, Perrin DR. Purification of Laboratory Chemicals, by DD Perrin. WLF Armarego and Dawn R. Perrin: Pergamon Press; 1966.
  • 33. Spiller W, Kliesch H, Wöhrle D, Hackbarth S, Röder B, Schnurpfeil G. Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions. J Porphyrins Phthalocyanines. 1998;2(2):145-58.
  • 34. Brannon JH, Magde D. Picosecond laser photophysics. Group 3A phthalocyanines. JACS. 1980;102(1):62-65.
  • 35. Ogunsipe A, Nyokong T. Photophysical and photochemical studies of sulphonated non-transition metal phthalocyanines in aqueous and non-aqueous media. J Photochem Photobiol A. 2005;173(2):211-20.
  • 36. Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T. Photochemical studies of tetra-2, 3-pyridinoporphyrazines. J Photochem Photobiol A. 2001;140(3):215-22.
  • 37. Gorduk S, Koyun O, Avciata O, Altindal A, Avciata U. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes. Journal of Chemistry. 2017;2017.
  • 38. Kadish KM, Smith KM, Guilard LR. The Porphyrin Handbook: Phthalocyanines: Properties and Materials. 2003. Academic Press.
  • 39. Jeong J, Kumar RS, Mergu N, Son Y-A. Photophysical, electrochemical, thermal and aggregation properties of new metal phthalocyanines. J Mol Struct. 2017;1147:469-79.
  • 40. Engelkamp H, Nolte RJ. Molecular materials based on crown ether functionalized phthalocyanines. J Porphyrins Phthalocyanines. 2000;4(05):454-59.
  • 41. Dominguez D, Snow A, Shirk J, Pong R. Polyethyleneoxide-capped phthalocyanines: limiting phthalocyanine aggregation to dimer formation. J Porphyrins Phthalocyanines. 2001;5(07):582-92.
  • 42. Sibrian-Vazquez M, Ortiz J, Nesterova IV, Fernández-Lázaro F, Sastre-Santos A, Soper SA, et al. Synthesis and properties of cell-targeted Zn(II)−phthalocyanine−peptide conjugates. Bioconjugate Chem. 2007;18(2):410-20.
  • 43. Ogunsipe A, Durmuş M, Atilla D, Gürek AG, Ahsen V, Nyokong T. Synthesis, photophysical and photochemical studies on long chain zinc phthalocyanine derivatives. Synth Met. 2008;158(21-24):839-47.
  • 44. Durmuş M, Nyokong T. The synthesis, fluorescence behaviour and singlet oxygen studies of new water-soluble cationic gallium (III) phthalocyanines. Inorg Chem Commun. 2007;10(3):332-38.
  • 45. Forster T, Hoffmann G. Viscosity dependence of fluorescent quantum yields of some dye systems. Zeitschrift Fur Physikalische Chemie-Frankfurt. 1971;75(1-2):63-&.
  • 46. Çakır V, Çakır D, Pişkin M, Durmuş M, Bıyıklıoğlu Z. New peripherally and non-peripherally tetra-substituted water soluble zinc phthalocyanines: synthesis, photophysics and photochemistry. J Organomet Chem. 2015;783:120-29.
  • 47. Durmuş M, Nyokong T. Synthesis and solvent effects on the electronic absorption and fluorescence spectral properties of substituted zinc phthalocyanines. Polyhedron. 2007;26(12):2767-76.
  • 48. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct. 2003;650(1-3):131-40.
  • 49. Maree SE, Nyokong T. Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes. J Porphyrins Phthalocyanines. 2001;5(11):782-92.
  • 50. Nyokong T, Antunes E. Photochemical and photophysical properties of metallophthalocyanines. Handbook of Porphyrin Science (Volume 7) With Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine: World Scientific; 2010. p. 247-357.
  • 51. Durmuş M. Photochemical and photophysical characterization. Photosensitizers in medicine, environment, and security: Springer; 2011. p. 135-266.
  • 52. Albakour M, Tunç G, Akyol B, Kostakoğlu S T, Berber S, Bekaroğlu Ö, Gürek A G. Synthesis, characterization, photophysicochemical properties and theoretical study of novel zinc phthalocyanine containing four tetrathia macrocycles. J Porphyrins Phthalocyanines. 2018; 22(01n03): 77-87.
There are 52 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Semih Gorduk 0000-0001-7956-8368

Publication Date January 1, 2018
Submission Date June 28, 2018
Acceptance Date July 18, 2018
Published in Issue Year 2018

Cite

Vancouver Gorduk S. Ferulic Acid Substituted Zn(II) Phthalocyanine: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties. JOTCSA. 2018;5(2):903-18.

Cited By