Research Article
BibTex RIS Cite
Year 2021, , 279 - 288, 28.02.2021
https://doi.org/10.18596/jotcsa.812081

Abstract

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Ca-Cancer J. Clin. 2020;70(1):7-30.
  • 2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. Ca-Cancer J. Clin. 2016;66(4):271-89.
  • 3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456-62.
  • 4. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer. 2012;12(4):237-51.
  • 5. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. cancer. 1981;47(1):207-14.
  • 6. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90(12):889-905.
  • 7. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003;3(5):380.
  • 8. Li X, Kolemen S, Yoon J, Akkaya EU. Activatable photosensitizers: agents for selective photodynamic therapy. Adv Funct Mater. 2017;27(5):1604053.
  • 9. Lukyanets EA. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 1999;3(6):10.
  • 10. Ogura S-i, Tabata K, Fukushima K, Kamachi T, Okura I. Development of phthalocyanines for photodynamic therapy. J Porphyrins Phthalocyanines. 2006;10(09):1116-24.
  • 11. Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DK, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev. 2020;49(4):1041-56.
  • 12. Gorduk S, Altindal A. Non-peripherally tetra substituted phthalocyanines bearing carboxylic acid anchoring groups as photosensitizer for high efficient dye-sensitized solar cells. J Mol Struct. 2020;1204:127636.
  • 13. Gregory P. Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines. 2000;4(4):432-437.
  • 14. Claessens CG, Hahn U, Torres T. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record. 2008;8(2):75-97.
  • 15. Gounden D, Nombona N, van Zyl WE. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord Chem Rev. 2020;420:213359.
  • 16. Karaca H. Synthesis of Novel Chalcone Substituted Metallophthalocyanines: Electrochemistry, Spectroelectrochemistry and Catalytic Oxidation of 2-mercaptoethanol. J Turk Chem Soc, Sect A: Chem. 2018;5(2):701-18.
  • 17. Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON. Practical applications of phthalocyanines–from dyes and pigments to materials for optical, electronic and photo-electronic devices. Macroheterocycles. 2012;5(3):191-202.
  • 18. Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol. 1991;53(6):859-70.
  • 19. Liu MO, Tai C-h, Sain M-z, Hu AT, Chou F-i. Photodynamic applications of phthalocyanines. J Photochem Photobiol, A. 2004;165(1-3):131-36.
  • 20. Kliesch H, Weitemeyer A, Müller S, Wöhrle D. Synthesis of phthalocyanines with one sulfonic acid, carboxylic acid, or amino group. Liebigs Annalen. 1995;1995(7):1269-73.
  • 21. Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J Mol Struct. 2004;689(1-2):89-97.
  • 22. Günsel A. Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium(III) Phthalocyanines Containing Oxygen/Sulfur Bridge. J Turk Chem Soc, Sect A: Chem. 2017;5(1):269-82.
  • 23. Gorduk S. Ferulic Acid Substituted Zn(II) Phthalocyanine: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties. J Turk Chem Soc, Sect A: Chem. 2018;5(2):903-18.
  • 24. Temizel S, Sevim AM. Synthesis and photophysical properties of A3B-type non-symmetrically substituted anthracene-based zinc(II) phthalocyanine. J Turk Chem Soc, Sect A: Chem. 2020;7(1):107-16.
  • 25. Güzel E. Preparation and investigation of aggregation, fluorescence and singlet oxygen generation properties of gallium and metal-free phthalocyanines. J Turk Chem Soc, Sect A: Chem. 2019;5(3):1051-60.
  • 26. Özçeşmeci M. Aromatik azo grupları ile modifiye edilmiş, yakın-IR bölgede soğurma yapan metalsiz ve çinko(II) ftalosiyaninlerin sentezi ve karakterizasyonu. J Turk Chem Soc, Sect A: Chem.; 2015: 2(4):32-41.
  • 27. Gorduk S, Koyun O, Avciata O, Altindal A, Avciata U. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes. J. Chem. 2017;2017:1-9.
  • 28. Gorduk S, Avciata O, Avciata U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta. 2018;471:137-47.
  • 29. Gorduk S. Investigation of photophysicochemical properties of non-peripherally tetra-substituted metal-free, Mg(II), Zn(II) and In(III) CI phthalocyanines. Polyhedron. 2020;189:114727.
  • 30. Gorduk S. Octa-substituted metallophthalocyanines bearing (2,3-dihydrobenzo-1,4-benzodioxin-2-yl) methoxy and chloro groups: Synthesis, characterization and photophysicochemical studies. J Porphyrins Phthalocyanines. 2020;24(4):548-62.
  • 31. Demirbaş Ü, Ömeroğlu İ, Akçay HT, Durmuş M, Kantekin H. Synthesis, characterization, photophysical and photochemical properties of peripherally tetra benzodioxane substituted metal-free phthalocyanine and its zinc(II) and magnesium(II) derivatives. J Mol Struct. 2020;1223:128992.
  • 32. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Kantekin H. Non-peripherally tetra substituted phthalocyanines bearing benzodioxane moieties: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. J Mol Struct. 2019;1189:234-39.
  • 33. Uslan C, Köksoy B, Durmuş M, İşleyen ND, Öztürk Y, Çakar ZP, et al. The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. J. Biol. Inorg. 2019:1-20.
  • 34. Yanık H, Aydın D, Durmuş M, Ahsen V. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry. J Photochem Photobiol, A. 2009;206(1):18-26.
  • 35. Nyokong T. Electronic spectral and electrochemical behavior of near infrared absorbing metallophthalocyanines. Functional Phthalocyanine Molecular Materials: Springer; 2010. p. 45-87.
  • 36. Kadish K, Smith KM, Guilard R. The porphyrin handbook: phthalocyanines: properties and materials: Elsevier; 2000.
  • 37. Snow AW. Phthalocyanine Aggregation. The Porphyrin Handbook: Phthalocyanines: Properties and Materials. 2000;17:129.
  • 38. Can OS, Kaya EN, Durmuş M, Bulut M. High photosensitized singlet oxygen generating zinc(II) and indium(III) acetate phthalocyanines containing 6,8-di-tert-butyl-3-(p-oxyphenyl) coumarin groups. J Photochem Photobiol, A. 2016;317:56-67.
  • 39. Sindelo A, Osifeko OL, Nyokong T. Synthesis, photophysicochemical and photodynamic antimicrobial chemotherapy studies of indium pyridyl phthalocyanines: Charge versus bridging atom. Inorg Chim Acta. 2018;476:68-76.
  • 40. Ogunsipe A, Chen J-Y, Nyokong T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004;28(7):822-27.
  • 41. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct. 2003;650(1-3):131-40.
  • 42. Simone BCD, Mazzone G, Russo N, Sicilia E, Toscano M. Metal atom effect on the photophysical properties of Mg(II), Zn(II), Cd(II), and Pd(II) tetraphenylporphyrin complexes proposed as possible drugs in photodynamic therapy. Molecules. 2017;22(7):1093.
  • 43. Durmuş M, Nyokong T. Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives. Tetrahedron. 2007;63(6):1385-94.
  • 44. Lovell JF, Liu TW, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev. 2010;110(5):2839-57.
  • 45. Chauke V, Durmuş M, Nyokong T. Photochemistry, photophysics and nonlinear optical parameters of phenoxy and tert-butylphenoxy substituted indium(III) phthalocyanines. J Photochem Photobiol, A. 2007;192(2-3):179-87.
  • 46. Ali HEA, Pişkin M, Altun S, Durmuş M, Odabaş Z. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. J Lumin. 2016;173:113-19.
  • 47. Durmuş M. Photochemical and photophysical characterization. Photosensitizers in medicine, environment, and security: Springer; 2011. p. 135-266.
  • 48. Çapkın A, Pişkin M, Durmuş M, Bulut M. Spectroscopic, photophysical and photochemical properties of newly metallo-phthalocyanines containing coumarin derivative. J Mol Struct. 2020;1213:128145.

Investigation of singlet oxygen production property of peripherally tetra-substituted In(III)CI phthalocyanine for photodynamic therapy

Year 2021, , 279 - 288, 28.02.2021
https://doi.org/10.18596/jotcsa.812081

Abstract

Phthalocyanines (Pcs) are macrocyclic compounds of great importance. Different metals and ligands can be used in the synthesis of Pc compounds and it seems interesting that these give different properties to Pcs. Thus, the usage areas of Pcs have been increasing day by day. One of the most important areas of use of Pcs is photodynamic therapy (PDT) application. The scope of this study is synthesis, characterization and investigation of singlet oxygen generation property of new peripherally tetra benzodioxane substituted indium(III) chloro phthalocyanine (InCIPc) which may be used as a potential photosensitizer for photodynamic therapy (PDT) applications. The new compound was characterized by various techniques such as elemental analysis, FT-IR, 1H NMR, MS, and UV–Vis techniques. Furthermore, photophysical and photochemical properties of newly synthesized Pc were investigated for PDT studies. At the same time, the effect of combination of heavy indium atom and benzodioxane groups bearing oxygen atom on solubility and photophysicochemical properties was discussed. The results showed that this compound exhibits good solubility in DMSO and shows high singlet oxygen production. According to the displayed properties and singlet oxygen production, we can say that this compound is a potential candidate for PDT applications.

References

  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Ca-Cancer J. Clin. 2020;70(1):7-30.
  • 2. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics, 2016. Ca-Cancer J. Clin. 2016;66(4):271-89.
  • 3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267(5203):1456-62.
  • 4. Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer. 2012;12(4):237-51.
  • 5. Miller A, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. cancer. 1981;47(1):207-14.
  • 6. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90(12):889-905.
  • 7. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat. Rev. Cancer. 2003;3(5):380.
  • 8. Li X, Kolemen S, Yoon J, Akkaya EU. Activatable photosensitizers: agents for selective photodynamic therapy. Adv Funct Mater. 2017;27(5):1604053.
  • 9. Lukyanets EA. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines. 1999;3(6):10.
  • 10. Ogura S-i, Tabata K, Fukushima K, Kamachi T, Okura I. Development of phthalocyanines for photodynamic therapy. J Porphyrins Phthalocyanines. 2006;10(09):1116-24.
  • 11. Lo P-C, Rodríguez-Morgade MS, Pandey RK, Ng DK, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev. 2020;49(4):1041-56.
  • 12. Gorduk S, Altindal A. Non-peripherally tetra substituted phthalocyanines bearing carboxylic acid anchoring groups as photosensitizer for high efficient dye-sensitized solar cells. J Mol Struct. 2020;1204:127636.
  • 13. Gregory P. Industrial applications of phthalocyanines. J Porphyrins Phthalocyanines. 2000;4(4):432-437.
  • 14. Claessens CG, Hahn U, Torres T. Phthalocyanines: From outstanding electronic properties to emerging applications. The Chemical Record. 2008;8(2):75-97.
  • 15. Gounden D, Nombona N, van Zyl WE. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord Chem Rev. 2020;420:213359.
  • 16. Karaca H. Synthesis of Novel Chalcone Substituted Metallophthalocyanines: Electrochemistry, Spectroelectrochemistry and Catalytic Oxidation of 2-mercaptoethanol. J Turk Chem Soc, Sect A: Chem. 2018;5(2):701-18.
  • 17. Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON. Practical applications of phthalocyanines–from dyes and pigments to materials for optical, electronic and photo-electronic devices. Macroheterocycles. 2012;5(3):191-202.
  • 18. Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol. 1991;53(6):859-70.
  • 19. Liu MO, Tai C-h, Sain M-z, Hu AT, Chou F-i. Photodynamic applications of phthalocyanines. J Photochem Photobiol, A. 2004;165(1-3):131-36.
  • 20. Kliesch H, Weitemeyer A, Müller S, Wöhrle D. Synthesis of phthalocyanines with one sulfonic acid, carboxylic acid, or amino group. Liebigs Annalen. 1995;1995(7):1269-73.
  • 21. Ogunsipe A, Nyokong T. Effects of substituents and solvents on the photochemical properties of zinc phthalocyanine complexes and their protonated derivatives. J Mol Struct. 2004;689(1-2):89-97.
  • 22. Günsel A. Comparative Studies of Photophysicochemical Properties of Non-Peripherally Anisole/Thioanisole-Tetrasubstituted Gallium(III) Phthalocyanines Containing Oxygen/Sulfur Bridge. J Turk Chem Soc, Sect A: Chem. 2017;5(1):269-82.
  • 23. Gorduk S. Ferulic Acid Substituted Zn(II) Phthalocyanine: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties. J Turk Chem Soc, Sect A: Chem. 2018;5(2):903-18.
  • 24. Temizel S, Sevim AM. Synthesis and photophysical properties of A3B-type non-symmetrically substituted anthracene-based zinc(II) phthalocyanine. J Turk Chem Soc, Sect A: Chem. 2020;7(1):107-16.
  • 25. Güzel E. Preparation and investigation of aggregation, fluorescence and singlet oxygen generation properties of gallium and metal-free phthalocyanines. J Turk Chem Soc, Sect A: Chem. 2019;5(3):1051-60.
  • 26. Özçeşmeci M. Aromatik azo grupları ile modifiye edilmiş, yakın-IR bölgede soğurma yapan metalsiz ve çinko(II) ftalosiyaninlerin sentezi ve karakterizasyonu. J Turk Chem Soc, Sect A: Chem.; 2015: 2(4):32-41.
  • 27. Gorduk S, Koyun O, Avciata O, Altindal A, Avciata U. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes. J. Chem. 2017;2017:1-9.
  • 28. Gorduk S, Avciata O, Avciata U. Photocatalytic degradation of methylene blue under visible light irradiation by non-peripherally tetra substituted phthalocyanine-TiO2 nanocomposites. Inorg Chim Acta. 2018;471:137-47.
  • 29. Gorduk S. Investigation of photophysicochemical properties of non-peripherally tetra-substituted metal-free, Mg(II), Zn(II) and In(III) CI phthalocyanines. Polyhedron. 2020;189:114727.
  • 30. Gorduk S. Octa-substituted metallophthalocyanines bearing (2,3-dihydrobenzo-1,4-benzodioxin-2-yl) methoxy and chloro groups: Synthesis, characterization and photophysicochemical studies. J Porphyrins Phthalocyanines. 2020;24(4):548-62.
  • 31. Demirbaş Ü, Ömeroğlu İ, Akçay HT, Durmuş M, Kantekin H. Synthesis, characterization, photophysical and photochemical properties of peripherally tetra benzodioxane substituted metal-free phthalocyanine and its zinc(II) and magnesium(II) derivatives. J Mol Struct. 2020;1223:128992.
  • 32. Demirbaş Ü, Akyüz D, Akçay HT, Koca A, Kantekin H. Non-peripherally tetra substituted phthalocyanines bearing benzodioxane moieties: Synthesis, characterization and investigation of electrochemical and spectroelectrochemical properties. J Mol Struct. 2019;1189:234-39.
  • 33. Uslan C, Köksoy B, Durmuş M, İşleyen ND, Öztürk Y, Çakar ZP, et al. The synthesis and investigation of photochemical, photophysical and biological properties of new lutetium, indium, and zinc phthalocyanines substituted with PEGME-2000 blocks. J. Biol. Inorg. 2019:1-20.
  • 34. Yanık H, Aydın D, Durmuş M, Ahsen V. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry. J Photochem Photobiol, A. 2009;206(1):18-26.
  • 35. Nyokong T. Electronic spectral and electrochemical behavior of near infrared absorbing metallophthalocyanines. Functional Phthalocyanine Molecular Materials: Springer; 2010. p. 45-87.
  • 36. Kadish K, Smith KM, Guilard R. The porphyrin handbook: phthalocyanines: properties and materials: Elsevier; 2000.
  • 37. Snow AW. Phthalocyanine Aggregation. The Porphyrin Handbook: Phthalocyanines: Properties and Materials. 2000;17:129.
  • 38. Can OS, Kaya EN, Durmuş M, Bulut M. High photosensitized singlet oxygen generating zinc(II) and indium(III) acetate phthalocyanines containing 6,8-di-tert-butyl-3-(p-oxyphenyl) coumarin groups. J Photochem Photobiol, A. 2016;317:56-67.
  • 39. Sindelo A, Osifeko OL, Nyokong T. Synthesis, photophysicochemical and photodynamic antimicrobial chemotherapy studies of indium pyridyl phthalocyanines: Charge versus bridging atom. Inorg Chim Acta. 2018;476:68-76.
  • 40. Ogunsipe A, Chen J-Y, Nyokong T. Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004;28(7):822-27.
  • 41. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct. 2003;650(1-3):131-40.
  • 42. Simone BCD, Mazzone G, Russo N, Sicilia E, Toscano M. Metal atom effect on the photophysical properties of Mg(II), Zn(II), Cd(II), and Pd(II) tetraphenylporphyrin complexes proposed as possible drugs in photodynamic therapy. Molecules. 2017;22(7):1093.
  • 43. Durmuş M, Nyokong T. Synthesis, photophysical and photochemical properties of aryloxy tetra-substituted gallium and indium phthalocyanine derivatives. Tetrahedron. 2007;63(6):1385-94.
  • 44. Lovell JF, Liu TW, Chen J, Zheng G. Activatable photosensitizers for imaging and therapy. Chem Rev. 2010;110(5):2839-57.
  • 45. Chauke V, Durmuş M, Nyokong T. Photochemistry, photophysics and nonlinear optical parameters of phenoxy and tert-butylphenoxy substituted indium(III) phthalocyanines. J Photochem Photobiol, A. 2007;192(2-3):179-87.
  • 46. Ali HEA, Pişkin M, Altun S, Durmuş M, Odabaş Z. Synthesis, characterization, photophysical, and photochemical properties of novel zinc(II) and indium(III) phthalocyanines containing 2-phenylphenoxy units. J Lumin. 2016;173:113-19.
  • 47. Durmuş M. Photochemical and photophysical characterization. Photosensitizers in medicine, environment, and security: Springer; 2011. p. 135-266.
  • 48. Çapkın A, Pişkin M, Durmuş M, Bulut M. Spectroscopic, photophysical and photochemical properties of newly metallo-phthalocyanines containing coumarin derivative. J Mol Struct. 2020;1213:128145.
There are 48 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry
Journal Section Articles
Authors

Semih Gördük 0000-0001-7956-8368

Publication Date February 28, 2021
Submission Date October 19, 2020
Acceptance Date January 6, 2021
Published in Issue Year 2021

Cite

Vancouver Gördük S. Investigation of singlet oxygen production property of peripherally tetra-substituted In(III)CI phthalocyanine for photodynamic therapy. JOTCSA. 2021;8(1):279-88.