Research Article
BibTex RIS Cite

A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix

Year 2021, , 787 - 802, 31.08.2021
https://doi.org/10.18596/jotcsa.934775

Abstract

With the development of current technology, several concepts of self-healing materials (SHMs) have recently been proposed, and capsule-based SHMs are explored. In our study, a terminal alkyne compound (bis-propargyl-succinate, BPS) is concerned as a healing agent to be used as a core material, and poly(urea-formaldehyde) (PUF) is employed as a wall shell. Besides, the chemical, morphological and thermal properties of the microcapsules (MCs) are also determined by Fourier-transform infrared spectroscopy (FTIR), gas chromatography (GC), thermogravimetric analysis (TGA), and optical microscopy (OM). Additionally, the MCs have better thermal stability up to 257 °C with the rough outer surface. The MCs have successfully encapsulated 75.0% of BPS with a size range of 63 – 125 μm and PUF shell thickness range of 5.72 – 11.35 μm; moreover, the stability of MCs is well maintained within 50 days at room temperature basing on the solvent extraction method. Concomitantly, self-healing ability is activated by the breakup of the MCs as cracks, then the healing agent (BPS) is released into the cracked regions to react with azide groups of the polymeric matrix. The BPS in the MCs is moved to cracked regions, which involves MCs diameter and weight fraction of PUF capsules. Moreover, the self-healing ability can reach high when BPS amounts (i.e., SHMs containing 5% and 10% of MCs) are available sufficiently to be outrightly filled into the cracked regions. Thereby, MCs' size and weight fraction can be reasonably selected to result in an optimal healing capacity for a pre-established size of cracks.

Supporting Institution

No

Project Number

No

References

  • 1. Brown EN, Kessler MR, Sottos NR, White SR. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation. 2003;20(6):719–30. DOI: https://doi.org/10.3109/02652040309178083.
  • 2. Yuan L, Liang G, Xie J, Li L, Guo J. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer. 2006;47(15):5338–49. DOI: https://doi.org/10.1016/j.polymer.2006.05.051.
  • 3. Suryanarayana C, Rao KC, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings. 2008;63(1):72–8. DOI: https://doi.org/10.1016/j.porgcoat.2008.04.008.
  • 4. Cosco S, Ambrogi V, Musto P, Carfagna C. Properties of poly(urea-formaldheyde) microcapsules containing an epoxy resin. Journal of Applied Polymer Science. 2007;105(3):1400–11. DOI: https://doi.org/10.1002/app.26263.
  • 5. Keller MW, Sottos NR. Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. Experimental Mechanics. 2006;46(6):725–33. DOI: https://doi.org/10.1007/s11340-006-9659-3.
  • 6. Ghorbanzadeh Ahangari M, Fereidoon A, Jahanshahi M, Sharifi N. Effect of nanoparticles on the micromechanical and surface properties of poly(urea–formaldehyde) composite microcapsules. Composites Part B: Engineering. 2014;56:450–5. DOI: https://doi.org/10.1016/j.compositesb.2013.08.071.
  • 7. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO. Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polymer Degradation and Stability. 2019;165:43–8. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.04.015.
  • 8. Caraculacu AA, Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Progress in Polymer Science. 2001;26(5):799–851. DOI: https://doi.org/10.1016/S0079-6700(00)00033-2.
  • 9. Acik B, Acik G, Erdemi H. Synthesis and characterization of bile acid, poly (ε-caprolactone) and ʟ-lysine diisocyanate ethyl ester based polyurethanes and investigation of their biodegradability properties. European Polymer Journal. 2021;146:110247. DOI: https://doi.org/10.1016/j.eurpolymj.2020.110247.
  • 10. Binder WH, Sachsenhofer R. ‘Click’ Chemistry in Polymer and Material Science: An Update: ‘Click’ Chemistry in Polymer and Material Science: An Update. Macromolecular Rapid Communications. 2008;29(12–13):952–81. DOI: https://doi.org/10.1002/marc.200800089.
  • 11. Díaz DD, Punna S, Holzer P, McPherson AK, Sharpless KB, Fokin VV, et al. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A: Polymer Chemistry. 2004;42(17):4392–403. DOI: https://doi.org/10.1002/pola.20330.
  • 12. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition. 2002;41(14):2596–9. DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
  • 13. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using “Azide-Alkyne” Click. Journal of Engineering Science and Technology Review. 2020;13(4):110–6. DOI: https://doi.org/10.25103/jestr.134.10.
  • 14. Vo TS, Vo TTBC, Ti̇en TT, Si̇nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. Journal of the Turkish Chemical Society Section A: Chemistry. 2021;8(2):519–26. DOI: https://doi.org/10.18596/jotcsa.878515.
  • 15. Gragert M, Schunack M, Binder WH. Azide/Alkyne-“Click”-Reactions of Encapsulated Reagents: Toward Self-Healing Materials. Macromolecular Rapid Communications. 2011;32(5):419–25. DOI: https://doi.org/10.1002/marc.201000687.
  • 16. Akhan S, Oktay B, Özdemir OK, Madakbaş S, Kayaman Apohan N. Polyurethane graphene nanocomposites with self-healing properties by azide-alkyne click reaction. Materials Chemistry and Physics. 2020;254:123315. DOI: https://doi.org/10.1016/j.matchemphys.2020.123315.
  • 17. Döhler D, Michael P, Binder WH. Autocatalysis in the Room Temperature Copper(I)-Catalyzed Alkyne–Azide “Click” Cycloaddition of Multivalent Poly(acrylate)s and Poly(isobutylene)s. Macromolecules. 2012;45(8):3335–45. DOI: https://doi.org/10.1021/ma300405v.
  • 18. Saikia BJ, Dolui SK. Preparation and characterization of an azide–alkyne cycloaddition based self-healing system via a semiencapsulation method. RSC Advances. 2015;5(112):92480–9. DOI: https://doi.org/10.1039/C5RA17666B.
  • 19. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. The Journal of Organic Chemistry. 2002;67(9):3057–64. DOI: https://doi.org/10.1021/jo011148j.
  • 20. Gorman IE, Willer RL, Kemp LK, Storey RF. Development of a triazole-cure resin system for composites: Evaluation of alkyne curatives. Polymer. 2012;53(13):2548–58. DOI: https://doi.org/10.1016/j.polymer.2012.04.002.
  • 21. Osemeahon SA, Barminas JT. Development of amino resin for emulsion paint formulation: reactive blending of methylol urea with soybean oil. African Journal of Biotechnology. 2007;6(6):803-9. DOI: https://doi.org/10.4314/ajb.v6i6.56907.
  • 22. Osemeahon SA, Barminas JT. Study of some physical properties of urea formaldehyde and urea proparaldehyde copolymer composite for emulsion paint formulation. International Journal of Physical Sciences. 2007; 2: 169-177. DOI: https://doi.org/10.5897/IJPS.9000533.
  • 23. Liu Q, Zhang J, Liu W, Guo F, Pei J, Zhu C, et al. Preparation and characterization of self-healing microcapsules embedding waterborne epoxy resin and curing agent for asphalt materials. Construction and Building Materials. 2018;183:384–94. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.185.
  • 24. Liao LP, Zhang W, Zhao Y, Li WJ. Preparation and Characterization of Microcapsules for Self-healing Materials. Chemical Research in Chinese Universities. 2010; 26: 496-500.
  • 25. Cai X, Fu D, Qu A. Effects of processing conditions on the properties of epoxy resin microcapsule. J Wuhan Univ Technol-Mat Sci Edit. 2015;30(4):689–94. DOI: https://doi.org/10.1007/s11595-015-1213-7.
  • 26. Arshad MA, Maaroufi A, Benavente R, Pinto G. Kinetics of the thermal degradation mechanisms in urea-formaldehyde cellulose composites filled with zinc particles. Journal of Materials Science: Materials in Electronics. 2017;28(16):11832–45. DOI: https://doi.org/10.1007/s10854-017-6991-6.
  • 27. Arshad MA, Maaroufi A, Benavente R, Pinto G. Thermal degradation of urea-formaldehyde cellulose composites filled with aluminum particles: Kinetic approach to mechanisms. Journal of Applied Polymer Science. 2017;134(19). DOI: https://doi.org/10.1002/app.44826.
  • 28. Arshad MA, Maaroufi A, Pinto G, El-Barkany S, Elidrissi A. Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin. Bulletin of Materials Science. 2016;39(6):1609–18. DOI: https://doi.org/10.1007/s12034-016-1304-x.
  • 29. Jadhao MM, Paliwal LJ, Bhave NS. Resin II: Thermal degradation studies of terpolymer resins derived from 2,2′-dihydroxybiphenyl, urea, and formaldehyde. Journal of Applied Polymer Science. 2006;101(1):227–32. DOI: https://doi.org/10.1002/app.23224.
  • 30. Camino G, Operti L, Trossarelli L. Mechanism of thermal degradation of urea-formaldehyde polycondensates. Polymer Degradation and Stability. 1983;5(3):161–72. DOI: https://doi.org/10.1016/0141-3910(83)90007-1.
  • 31. Brown EN, White SR, Sottos NR. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Composites Science and Technology. 2005;65(15):2474–80. DOI: https://doi.org/10.1016/j.compscitech.2005.04.053.
Year 2021, , 787 - 802, 31.08.2021
https://doi.org/10.18596/jotcsa.934775

Abstract

Project Number

No

References

  • 1. Brown EN, Kessler MR, Sottos NR, White SR. In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. Journal of Microencapsulation. 2003;20(6):719–30. DOI: https://doi.org/10.3109/02652040309178083.
  • 2. Yuan L, Liang G, Xie J, Li L, Guo J. Preparation and characterization of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Polymer. 2006;47(15):5338–49. DOI: https://doi.org/10.1016/j.polymer.2006.05.051.
  • 3. Suryanarayana C, Rao KC, Kumar D. Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings. Progress in Organic Coatings. 2008;63(1):72–8. DOI: https://doi.org/10.1016/j.porgcoat.2008.04.008.
  • 4. Cosco S, Ambrogi V, Musto P, Carfagna C. Properties of poly(urea-formaldheyde) microcapsules containing an epoxy resin. Journal of Applied Polymer Science. 2007;105(3):1400–11. DOI: https://doi.org/10.1002/app.26263.
  • 5. Keller MW, Sottos NR. Mechanical Properties of Microcapsules Used in a Self-Healing Polymer. Experimental Mechanics. 2006;46(6):725–33. DOI: https://doi.org/10.1007/s11340-006-9659-3.
  • 6. Ghorbanzadeh Ahangari M, Fereidoon A, Jahanshahi M, Sharifi N. Effect of nanoparticles on the micromechanical and surface properties of poly(urea–formaldehyde) composite microcapsules. Composites Part B: Engineering. 2014;56:450–5. DOI: https://doi.org/10.1016/j.compositesb.2013.08.071.
  • 7. Acik G, Karabulut HRF, Altinkok C, Karatavuk AO. Synthesis and characterization of biodegradable polyurethanes made from cholic acid and l-lysine diisocyanate ethyl ester. Polymer Degradation and Stability. 2019;165:43–8. DOI: https://doi.org/10.1016/j.polymdegradstab.2019.04.015.
  • 8. Caraculacu AA, Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Progress in Polymer Science. 2001;26(5):799–851. DOI: https://doi.org/10.1016/S0079-6700(00)00033-2.
  • 9. Acik B, Acik G, Erdemi H. Synthesis and characterization of bile acid, poly (ε-caprolactone) and ʟ-lysine diisocyanate ethyl ester based polyurethanes and investigation of their biodegradability properties. European Polymer Journal. 2021;146:110247. DOI: https://doi.org/10.1016/j.eurpolymj.2020.110247.
  • 10. Binder WH, Sachsenhofer R. ‘Click’ Chemistry in Polymer and Material Science: An Update: ‘Click’ Chemistry in Polymer and Material Science: An Update. Macromolecular Rapid Communications. 2008;29(12–13):952–81. DOI: https://doi.org/10.1002/marc.200800089.
  • 11. Díaz DD, Punna S, Holzer P, McPherson AK, Sharpless KB, Fokin VV, et al. Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A: Polymer Chemistry. 2004;42(17):4392–403. DOI: https://doi.org/10.1002/pola.20330.
  • 12. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition. 2002;41(14):2596–9. DOI: https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
  • 13. Vo TS, Vo TTBC. Preparation and Characterization of Bis-Propargyl-Succinate, and its Application in Preliminary Healing Ability of Crosslinked Polyurethane using “Azide-Alkyne” Click. Journal of Engineering Science and Technology Review. 2020;13(4):110–6. DOI: https://doi.org/10.25103/jestr.134.10.
  • 14. Vo TS, Vo TTBC, Ti̇en TT, Si̇nh NT. Enhancement of mechanical property of modified polyurethane with bis-butyl succinate. Journal of the Turkish Chemical Society Section A: Chemistry. 2021;8(2):519–26. DOI: https://doi.org/10.18596/jotcsa.878515.
  • 15. Gragert M, Schunack M, Binder WH. Azide/Alkyne-“Click”-Reactions of Encapsulated Reagents: Toward Self-Healing Materials. Macromolecular Rapid Communications. 2011;32(5):419–25. DOI: https://doi.org/10.1002/marc.201000687.
  • 16. Akhan S, Oktay B, Özdemir OK, Madakbaş S, Kayaman Apohan N. Polyurethane graphene nanocomposites with self-healing properties by azide-alkyne click reaction. Materials Chemistry and Physics. 2020;254:123315. DOI: https://doi.org/10.1016/j.matchemphys.2020.123315.
  • 17. Döhler D, Michael P, Binder WH. Autocatalysis in the Room Temperature Copper(I)-Catalyzed Alkyne–Azide “Click” Cycloaddition of Multivalent Poly(acrylate)s and Poly(isobutylene)s. Macromolecules. 2012;45(8):3335–45. DOI: https://doi.org/10.1021/ma300405v.
  • 18. Saikia BJ, Dolui SK. Preparation and characterization of an azide–alkyne cycloaddition based self-healing system via a semiencapsulation method. RSC Advances. 2015;5(112):92480–9. DOI: https://doi.org/10.1039/C5RA17666B.
  • 19. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. The Journal of Organic Chemistry. 2002;67(9):3057–64. DOI: https://doi.org/10.1021/jo011148j.
  • 20. Gorman IE, Willer RL, Kemp LK, Storey RF. Development of a triazole-cure resin system for composites: Evaluation of alkyne curatives. Polymer. 2012;53(13):2548–58. DOI: https://doi.org/10.1016/j.polymer.2012.04.002.
  • 21. Osemeahon SA, Barminas JT. Development of amino resin for emulsion paint formulation: reactive blending of methylol urea with soybean oil. African Journal of Biotechnology. 2007;6(6):803-9. DOI: https://doi.org/10.4314/ajb.v6i6.56907.
  • 22. Osemeahon SA, Barminas JT. Study of some physical properties of urea formaldehyde and urea proparaldehyde copolymer composite for emulsion paint formulation. International Journal of Physical Sciences. 2007; 2: 169-177. DOI: https://doi.org/10.5897/IJPS.9000533.
  • 23. Liu Q, Zhang J, Liu W, Guo F, Pei J, Zhu C, et al. Preparation and characterization of self-healing microcapsules embedding waterborne epoxy resin and curing agent for asphalt materials. Construction and Building Materials. 2018;183:384–94. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.185.
  • 24. Liao LP, Zhang W, Zhao Y, Li WJ. Preparation and Characterization of Microcapsules for Self-healing Materials. Chemical Research in Chinese Universities. 2010; 26: 496-500.
  • 25. Cai X, Fu D, Qu A. Effects of processing conditions on the properties of epoxy resin microcapsule. J Wuhan Univ Technol-Mat Sci Edit. 2015;30(4):689–94. DOI: https://doi.org/10.1007/s11595-015-1213-7.
  • 26. Arshad MA, Maaroufi A, Benavente R, Pinto G. Kinetics of the thermal degradation mechanisms in urea-formaldehyde cellulose composites filled with zinc particles. Journal of Materials Science: Materials in Electronics. 2017;28(16):11832–45. DOI: https://doi.org/10.1007/s10854-017-6991-6.
  • 27. Arshad MA, Maaroufi A, Benavente R, Pinto G. Thermal degradation of urea-formaldehyde cellulose composites filled with aluminum particles: Kinetic approach to mechanisms. Journal of Applied Polymer Science. 2017;134(19). DOI: https://doi.org/10.1002/app.44826.
  • 28. Arshad MA, Maaroufi A, Pinto G, El-Barkany S, Elidrissi A. Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin. Bulletin of Materials Science. 2016;39(6):1609–18. DOI: https://doi.org/10.1007/s12034-016-1304-x.
  • 29. Jadhao MM, Paliwal LJ, Bhave NS. Resin II: Thermal degradation studies of terpolymer resins derived from 2,2′-dihydroxybiphenyl, urea, and formaldehyde. Journal of Applied Polymer Science. 2006;101(1):227–32. DOI: https://doi.org/10.1002/app.23224.
  • 30. Camino G, Operti L, Trossarelli L. Mechanism of thermal degradation of urea-formaldehyde polycondensates. Polymer Degradation and Stability. 1983;5(3):161–72. DOI: https://doi.org/10.1016/0141-3910(83)90007-1.
  • 31. Brown EN, White SR, Sottos NR. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Composites Science and Technology. 2005;65(15):2474–80. DOI: https://doi.org/10.1016/j.compscitech.2005.04.053.
There are 31 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Thi Sinh Vo 0000-0003-3830-0474

Tran Thi Bich Chau Vo 0000-0002-3049-2080

Nhan Duy Pham 0000-0001-5989-3796

Thi Ngoc Huyen Laı This is me

Project Number No
Publication Date August 31, 2021
Submission Date May 8, 2021
Acceptance Date July 9, 2021
Published in Issue Year 2021

Cite

Vancouver Vo TS, Vo TTBC, Pham ND, Laı TNH. A Self-Healing Material Based on Microcapsules of Poly(Urea-Formaldehyde)/Bis-Propargyl-Succinate Containing in Polyurethane Matrix. JOTCSA. 2021;8(3):787-802.