BibTex RIS Cite

PREPARATION OF A HUMAN SKIN-MIMICKING GELS FOR IN VITRO MEASUREMENTS OF THE DUAL-BAND MEDICAL IMPLANT ANTENNA

Year 2016, Volume: 3 Issue: 3, 583 - 596, 08.01.2017
https://doi.org/10.18596/jotcsa.72855

Abstract

The purposes of this study are to design of a small size implantable antenna and to present a complementary recipe for a human skin mimicking material for in-vitro testing of implantable antennas operating at MICS (Medical Implant Communications Service, 402–405 MHz) and ISM (Industrial, Scientific, and Medical, 2.4 GHz–2.48 GHz) bands. Approximate electrical properties of human tissues at MICS and ISM bands were obtained by mixing de-ionized water, sugar, NaCl, and Poly(acrylic acid) (PAA or Carbomer) with different content percentages. In the literature Agarose, a polysaccharide polymer material, was widely used to ensure the formation of gel of the mixture and in our study we used Carbomer instead of Agarose for this aim. To test the antenna in-vitro, skin mimicking gels were made that to show electrical properties real skin tissue (relative permittivity (εr) and conductivity (σ)) for the operation frequencies of ISM and MICS bands. For the antenna performance evaluations the measurements of the antenna (return loss (S11)) have been performed by placing in to the skin mimicking gels. The measurements were taken in the 1 GHz - 5 GHz frequency band. The measurement and simulation results are quite good agreement except some discrepancy in S11 levels and frequency bands.

References

  • Asili M, Green R, Seran S, Topsakal E. A Small Implantable Antenna for MedRadio and ISM Bands. IEEE Antennas and Wireless Propagation Letters. 2012, 11: 1683-1685. DOI: 10.1109/LAWP.2013.2241723
  • Beach RD, Conlan RW, Godwin MC, Moussy F. Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors. IEEE Trans. Instr. Meas. 2005, 54 (1): 61-72. DOI: 10.1109/TIM.2004.839757
  • Beach RD, Kuster FV, Moussy F. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Trans. Instr. Meas. 1999, 48 (6): 1239–1245. DOI: 10.1109/19.816143
  • Yilmaz T, Karacolak T, Topsakal E. Characterization and Testing of a Skin Mimicking Material for Implantable Antennas Operating at ISM Band (2.4 GHz-2.48 GHz). IEEE Antennas and Wireless Propagation Letters. 2008, 7: 418-420. DOI: 10.1109/LAWP.2008.2001736
  • Furse CM. Design of an antenna for pacemaker communication. Microw. RF. 2000, 39 (3): 73-76.
  • Cavuoto J. Neural engineering’s image problem. IEEE Spectr. 2004, 41 (4): 32-37.
  • Schuster JW, Luebbers RJ. An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation. Antennas and Propagation Society International Symposium, IEEE. 1998, 4: 1988-1991. DOI:10.1109/APS.1998.701597
  • Weir RF, Troyk PR, DeMichele G, Kuiken T. Implantable myoelectric sensors (IMES) for upper-extremity prosthesis control- preliminary work. Engineering in Medicine and Biology Society, Proceedings of the 25th Annual International Conference of the IEEE, 2003, 2: 1562-1565. DOI:10.1109/IEMBS.2003.1279658
  • Budinger TF. Biomonitoring with Wireless Communications. Annual Review of Biomedical Engineering. 2003, 5 (1): 383-412. DOI: 10.1146/annurev.bioeng.5.040202.121653.
  • Gosalia K, Humayun MS, Lazzi G. Impedance Matching and Implementation of Planar Space-Filling Dipoles as Intraocular Implanted Antennas in a Retinal Prosthesis. IEEE Transactions on Antennas and Propagation. 2005, 53 (8): 2365-2373. DOI: 10.1109/TAP.2005.852514.
  • Jaehoon K, Rahmat-Samii Y. Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques. 2004, 52 (8): 1934-1943. DOI: 10.1109/TMTT.2004.832018.
  • Karacolak T, Cooper R, Topsakal E. Electrical Properties of Rat Skin and Design of Implantable Antennas for Medical Wireless Telemetry. IEEE Transactions on Antennas and Propagation. 2009, 57 (9): 2806-2812. DOI: 10.1109/TAP.2009.2027197.
  • Karacolak T, Hood AZ, Topsakal E. Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring. IEEE Transactions on Microwave Theory and Techniques. 2008, 56 (4): 1001-1008. DOI: 10.1109/TMTT.2008.919373.
  • Soontornpipit P, Furse CM, You Chung C. Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques. 2004, 52 (8): 1944-1951. DOI: 10.1109/TMTT.2004.831976.
  • Karaçolak T. Implantable antennas for wireless data telemetry: Design, simulation, and measurement techniques. Electrical and Computer Engineering, Mississippi State University, Mississippi State, Mississippi, 2009: 1-123.
  • Topsakal E. Antennas for medical applications: Ongoing research and future challenges. Electromagnetics in Advanced Applications, 2009. ICEAA '09. International Conference on, 2009: 890-893. DOI: 10.1109/ICEAA.2009.5297319
  • Zengin F, Akkaya E, B Turetken, San SE. Design and realization of ultra wide-band implant antenna for biotelemetry systems. General Assembly and Scientific Symposium, 2011 XXXth URSI, 2011: 1-4. DOI: 10.1109/URSIGASS.2011.6051320.
  • Bird TS. Definition and Misuse of Return Loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas and Propagation Magazine. 2009, 51 (2): 166-167. DOI:
  • Yilmaz T, Characterization of tissue mimicking materials for testing of implantable and on body antennas. Electrical engineering, Mississippi State University, Mississippi, 2009: 1-69.
  • Orwoll RA, Yong CS. Poly(acrylic acid). J.E. Mark (Ed.) Polymer Data Handbook. Oxford University Press, Inc., Oxford, England, 1999: 252–253.
  • Todica M, Pop CV, Stefan R, Nagy M, Garabagiu S. Some physical properties of poly (acrylic acid) gels with embedded gold nanoparticles. Studia Universitatis Babes-Bolyai, Chemia. 2015, 60 (1): 19-28.
  • Todica M, Stefan R, Pop CV, Papuc I, Stan O, Olar LE. UV-VIS and fluorescence investigation of some poly(acrylic) gels. Studia Universitatis Babes-Bolyai, Chemia 2015, 60 (1): 7-17.
  • Ballen M, Kanda M, Chou CK, Q. Balzano. Formulation and characterization of tissue simulating liquids used for SAR measurement. Proc. 23rd Annu. Bioelectromagn. Soc. Meeting. 2001, 14 (3): 80.
  • Chou CK, Chen GW, Guy AW, Luk KH. Formulas for preparing phantom muscle tissue and various radiofrequencies. Bioelectromagn. 1984, 5: 435-441. DOI: 10.1002/bem.2250050408.
  • Fukunaga K, Watanabe S, Yamanaka Y. Dielectric properties of tissue equivalent liquids and their effects on specific absoption rate. IEEE Trans. Electromagnetic Compatibility. 2004, 46 (1): 126-129. DOI:10.1109/TEMC.2004.823624.
  • Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys.Med. Biol. 2005, 50: 4245–4258. DOI: 10.1088/0031-9155/50/18/001.
  • Peyman A, Gabriel C. Tissue equivalent liquids for SAR measurement at microwave frequencies. Proc. 24th Annu. Bioelectromagn. Soc. Meeting. 2002, P-53: 184–185.
  • Stuchly SS. Specific absorption rate distributions in a heterogeneous model of the human body at radio frequencies. Nat. Tech. Inform. Ser. PB 87-201 356/AS. 1987, 89.
  • Stuchly SS, Kraszewski A, Stuchly MA, Hartsgrove G, Spiegel RJ. RF energy deposition in a heterogeneous model of man:Far-field exposures. IEEE Trans. Biomed. Eng. 1987, BME-34 (12): 951–957. DOI: 10.1109/TBME.1987.325934.
  • Kumar SA, Shanmuganantham T. Design and analysis of implantable CPW fed bowtie antenna for ISM band applications. AEU - International Journal of Electronics and Communications. 2014, 68 (2): 158-165. DOI:10.1016/j.aeue.2013.08.003.
  • Xia W, Saito K, Takahashi M, Ito K. Performances of an Implanted Cavity Slot Antenna Embedded in the Human Arm. IEEE Transactions on Antennas and Propagation. 2009, 57 (4): 894-899. DOI: 10.1109/TAP.2009.2014579.
  • Karacolak T, Topsakal E. Electrical properties of nude rat skin and design of implantable antennas for wireless data telemetry. Microwave Symposium Digest, IEEE MTT-S International. 2008: 907-910. DOI: 10.1109/MWSYM.2008.4632980.
  • Kiourti A, Nikita KS. Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis. IEEE Transactions on Antennas and Propagation. 2012, 60 (8): 3568-3575. DOI: 10.1109/TAP.2012.2201078.
Year 2016, Volume: 3 Issue: 3, 583 - 596, 08.01.2017
https://doi.org/10.18596/jotcsa.72855

Abstract

References

  • Asili M, Green R, Seran S, Topsakal E. A Small Implantable Antenna for MedRadio and ISM Bands. IEEE Antennas and Wireless Propagation Letters. 2012, 11: 1683-1685. DOI: 10.1109/LAWP.2013.2241723
  • Beach RD, Conlan RW, Godwin MC, Moussy F. Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three-electrode biosensors. IEEE Trans. Instr. Meas. 2005, 54 (1): 61-72. DOI: 10.1109/TIM.2004.839757
  • Beach RD, Kuster FV, Moussy F. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Trans. Instr. Meas. 1999, 48 (6): 1239–1245. DOI: 10.1109/19.816143
  • Yilmaz T, Karacolak T, Topsakal E. Characterization and Testing of a Skin Mimicking Material for Implantable Antennas Operating at ISM Band (2.4 GHz-2.48 GHz). IEEE Antennas and Wireless Propagation Letters. 2008, 7: 418-420. DOI: 10.1109/LAWP.2008.2001736
  • Furse CM. Design of an antenna for pacemaker communication. Microw. RF. 2000, 39 (3): 73-76.
  • Cavuoto J. Neural engineering’s image problem. IEEE Spectr. 2004, 41 (4): 32-37.
  • Schuster JW, Luebbers RJ. An FDTD algorithm for transient propagation in biological tissue with a Cole-Cole dispersion relation. Antennas and Propagation Society International Symposium, IEEE. 1998, 4: 1988-1991. DOI:10.1109/APS.1998.701597
  • Weir RF, Troyk PR, DeMichele G, Kuiken T. Implantable myoelectric sensors (IMES) for upper-extremity prosthesis control- preliminary work. Engineering in Medicine and Biology Society, Proceedings of the 25th Annual International Conference of the IEEE, 2003, 2: 1562-1565. DOI:10.1109/IEMBS.2003.1279658
  • Budinger TF. Biomonitoring with Wireless Communications. Annual Review of Biomedical Engineering. 2003, 5 (1): 383-412. DOI: 10.1146/annurev.bioeng.5.040202.121653.
  • Gosalia K, Humayun MS, Lazzi G. Impedance Matching and Implementation of Planar Space-Filling Dipoles as Intraocular Implanted Antennas in a Retinal Prosthesis. IEEE Transactions on Antennas and Propagation. 2005, 53 (8): 2365-2373. DOI: 10.1109/TAP.2005.852514.
  • Jaehoon K, Rahmat-Samii Y. Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques. 2004, 52 (8): 1934-1943. DOI: 10.1109/TMTT.2004.832018.
  • Karacolak T, Cooper R, Topsakal E. Electrical Properties of Rat Skin and Design of Implantable Antennas for Medical Wireless Telemetry. IEEE Transactions on Antennas and Propagation. 2009, 57 (9): 2806-2812. DOI: 10.1109/TAP.2009.2027197.
  • Karacolak T, Hood AZ, Topsakal E. Design of a Dual-Band Implantable Antenna and Development of Skin Mimicking Gels for Continuous Glucose Monitoring. IEEE Transactions on Microwave Theory and Techniques. 2008, 56 (4): 1001-1008. DOI: 10.1109/TMTT.2008.919373.
  • Soontornpipit P, Furse CM, You Chung C. Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques. 2004, 52 (8): 1944-1951. DOI: 10.1109/TMTT.2004.831976.
  • Karaçolak T. Implantable antennas for wireless data telemetry: Design, simulation, and measurement techniques. Electrical and Computer Engineering, Mississippi State University, Mississippi State, Mississippi, 2009: 1-123.
  • Topsakal E. Antennas for medical applications: Ongoing research and future challenges. Electromagnetics in Advanced Applications, 2009. ICEAA '09. International Conference on, 2009: 890-893. DOI: 10.1109/ICEAA.2009.5297319
  • Zengin F, Akkaya E, B Turetken, San SE. Design and realization of ultra wide-band implant antenna for biotelemetry systems. General Assembly and Scientific Symposium, 2011 XXXth URSI, 2011: 1-4. DOI: 10.1109/URSIGASS.2011.6051320.
  • Bird TS. Definition and Misuse of Return Loss [Report of the Transactions Editor-in-Chief]. IEEE Antennas and Propagation Magazine. 2009, 51 (2): 166-167. DOI:
  • Yilmaz T, Characterization of tissue mimicking materials for testing of implantable and on body antennas. Electrical engineering, Mississippi State University, Mississippi, 2009: 1-69.
  • Orwoll RA, Yong CS. Poly(acrylic acid). J.E. Mark (Ed.) Polymer Data Handbook. Oxford University Press, Inc., Oxford, England, 1999: 252–253.
  • Todica M, Pop CV, Stefan R, Nagy M, Garabagiu S. Some physical properties of poly (acrylic acid) gels with embedded gold nanoparticles. Studia Universitatis Babes-Bolyai, Chemia. 2015, 60 (1): 19-28.
  • Todica M, Stefan R, Pop CV, Papuc I, Stan O, Olar LE. UV-VIS and fluorescence investigation of some poly(acrylic) gels. Studia Universitatis Babes-Bolyai, Chemia 2015, 60 (1): 7-17.
  • Ballen M, Kanda M, Chou CK, Q. Balzano. Formulation and characterization of tissue simulating liquids used for SAR measurement. Proc. 23rd Annu. Bioelectromagn. Soc. Meeting. 2001, 14 (3): 80.
  • Chou CK, Chen GW, Guy AW, Luk KH. Formulas for preparing phantom muscle tissue and various radiofrequencies. Bioelectromagn. 1984, 5: 435-441. DOI: 10.1002/bem.2250050408.
  • Fukunaga K, Watanabe S, Yamanaka Y. Dielectric properties of tissue equivalent liquids and their effects on specific absoption rate. IEEE Trans. Electromagnetic Compatibility. 2004, 46 (1): 126-129. DOI:10.1109/TEMC.2004.823624.
  • Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys.Med. Biol. 2005, 50: 4245–4258. DOI: 10.1088/0031-9155/50/18/001.
  • Peyman A, Gabriel C. Tissue equivalent liquids for SAR measurement at microwave frequencies. Proc. 24th Annu. Bioelectromagn. Soc. Meeting. 2002, P-53: 184–185.
  • Stuchly SS. Specific absorption rate distributions in a heterogeneous model of the human body at radio frequencies. Nat. Tech. Inform. Ser. PB 87-201 356/AS. 1987, 89.
  • Stuchly SS, Kraszewski A, Stuchly MA, Hartsgrove G, Spiegel RJ. RF energy deposition in a heterogeneous model of man:Far-field exposures. IEEE Trans. Biomed. Eng. 1987, BME-34 (12): 951–957. DOI: 10.1109/TBME.1987.325934.
  • Kumar SA, Shanmuganantham T. Design and analysis of implantable CPW fed bowtie antenna for ISM band applications. AEU - International Journal of Electronics and Communications. 2014, 68 (2): 158-165. DOI:10.1016/j.aeue.2013.08.003.
  • Xia W, Saito K, Takahashi M, Ito K. Performances of an Implanted Cavity Slot Antenna Embedded in the Human Arm. IEEE Transactions on Antennas and Propagation. 2009, 57 (4): 894-899. DOI: 10.1109/TAP.2009.2014579.
  • Karacolak T, Topsakal E. Electrical properties of nude rat skin and design of implantable antennas for wireless data telemetry. Microwave Symposium Digest, IEEE MTT-S International. 2008: 907-910. DOI: 10.1109/MWSYM.2008.4632980.
  • Kiourti A, Nikita KS. Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis. IEEE Transactions on Antennas and Propagation. 2012, 60 (8): 3568-3575. DOI: 10.1109/TAP.2012.2201078.
There are 33 citations in total.

Details

Journal Section Articles
Authors

Erdinç Doğancı

Mustafa Hikmet Bilgehan Ucar

Adnan Sondas

Publication Date January 8, 2017
Submission Date July 22, 2016
Published in Issue Year 2016 Volume: 3 Issue: 3

Cite

Vancouver Doğancı E, Ucar MHB, Sondas A. PREPARATION OF A HUMAN SKIN-MIMICKING GELS FOR IN VITRO MEASUREMENTS OF THE DUAL-BAND MEDICAL IMPLANT ANTENNA. JOTCSA. 2017;3(3):583-96.