Research Article
BibTex RIS Cite
Year 2019, Volume: 6 Issue: 1, 35 - 40, 15.05.2019
https://doi.org/10.18596/jotcsa.466768

Abstract

References

  • 1. Gao X, Wang X, Ouyang X, Wen C. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Sci. Rep-UK. 2016; 6:27207.
  • 2. Karimi M, Jahangir V, Ezzati M, Saydi J, Lejbini MB. Zn0. 94Cd0. 06O nanoparticles with various structures, morphologies and optical properties toward MB optodecolorization. Opt. Mater. 2014; 36(3):697-703.
  • 3. Putri LK, Tan LL, Ong WJ, Chang WS, Chai SP. Graphene oxide: exploiting its unique properties toward visible-light-driven photocatalysis. Appl.Mater. Today. 2016; 4:9-16.
  • 4. Li M, Huang H, Yu S, Tian N, Dong F, Du X, Zhang Y. Simultaneously promoting charge separation and photoabsorption of BiOX (X= Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 2016; 386:285-95.
  • 5. Mazhdi M, Saydi J, Karimi M, Seidi J, Mazhdi F. A study on optical, photoluminescence and thermoluminescence properties of ZnO and Mn doped-ZnO nanocrystalline particles. Optik 2013; 124(20):4128-33.
  • 6. Askari MB, Banizi ZT, Soltani S, Seifi M. Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites. Optik. 2018; 157:230-9.
  • 7. Bystrov VS, Piccirillo C, Tobaldi DM, Castro, PML, Coutinho J, Kopyl S, Pullar RC. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl. Catal. B: Environ. 2016; 196:100-7.
  • 8. Güler SH, Güler Ö, Evin E, Islak S. Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik. 2016; 127(6):3187-91.
  • 9. Yin Q, Qiao R, Zhu L, Li Z, Li M, Wu W. α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis. Mater. Lett. 2014; 135:135-8.
  • 10. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012; 7(11):699.
  • 11. Chhowalla M, Shin HS, Eda G, Li, LJ Loh, KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013; 5(4):263.
  • 12. Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015; 44(9):2702-12.
  • 13. Kalantar‐zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. (2015). Two‐dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 2015; 25(32):5086-99.
  • 14. Yin W, Dong X, Yu J, Pan J, Yao Z, Gu Z, Zhao Y. MoS2-Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Appl. Mater. Inter. 2017; 9(25):21362-70.
  • 15. Chen Y, Wu Y, Sun B, Liu S, Liu H. (2017). Two‐Dimensional Nanomaterials for Cancer Nanotheranostics. Small. 2017; 13(10):1603446.
  • 16. Song JX, Tang XY, Zhou DM, Zhang W, James TD, He XP, Tian H. A fluorogenic 2D glycosheet for the simultaneous identification of human-and avian-receptor specificity in influenza viruses. Mater. Horiz. 2017; 4(3):431-6.
  • 17. Wahiba M, Feng XQ, Zang Y, James TD, Li J, Chen GR, He XP. A supramolecular pyrenyl glycoside-coated 2D MoS 2 composite electrode for selective cell capture. Chem. Commun. 2016; 52(78):11689-92.
  • 18. Teo WZ, Chng ELK, Sofer Z, Pumera M. Cytotoxicity of Exfoliated Transition‐Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues. Chemistry. 2014; 20(31):9627-32.
  • 19. Zhu H, Qiu S, Jiang W, Wu D, Zhang C. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ. Sci. Technol. 2011; 45(10):4527-31.
  • 20. Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008; 3(6):332.
  • 21. Zhang H, Duan X, Ding Y. Preparation and investigation on a novel nanostructured magnetic base catalyst MgAl–OH-LDH/CoFe2O4, Mater. Chem. Phys. 2009;114(2-3): 795-801.
  • 22. Willis AL. Turro NJ, O’Brien S. Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals, Chem. Mater. 2005;17:5970-5.
  • 23. Wang H, Chen P, Wen F, Zhu Y, Zhang Y, Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite, Sens. Actuators B. 2015;220:749–54.
  • 24. Sivashankar R, Sathya AB, Vasantharaj K, Sivasubramanian V. Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environ. Nanotechnol.Monit. Manage. 2014, 1–2, 36–49.
  • 25. Gómez-Pastora J, Bringas E, Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204.

LDH- ɣ-Fe2O3-MoS2 composite for Vegetable Oil and Pb2+ Removal From Water

Year 2019, Volume: 6 Issue: 1, 35 - 40, 15.05.2019
https://doi.org/10.18596/jotcsa.466768

Abstract

Water pollution is a global concern. Inorganic and
organic pollutants constitute primary pollutants in water resources. Therefore,
it is of great concern to develop advanced sorbent materials for effective and
efficient removal of metals and oil from water.
In this study, synthesis of new LDH composites which
would be used for sorption of heavy metals and oils from polluted water. For
this purpose, MgAlOH-
ɣ-Fe2O3-MoS2 composite
was prepared and characterized were made via FT-IR and XRD.
The XRD powder pattern of the composite showed that it
contained
g-Fe2O3 (PDF card
no:00-002-1047), MgAl(OH)14.XH2O (PDF card no:00-043-0072) and MoS2
(PDF card no:00-037-4492).
Thermal stability of the composite was investigated
via DTA/TG technique. MgAlOH-
ɣ-Fe2O3-MoS2
composite was shows highly efficient sorption for vegetable oil up to 418%
times its own weight. The ablity of MgAlOH-
ɣ-Fe2O3-MoS2
composite for removing Pb2+ ions from aqueous solution. Pb2+
analysis was made by ICP-OES.
The effect of Pb2+ amounts, PH, sorbent
amounts and solvent flow rate on t
he adsorption capacity of MgAlOH-
ɣ
-Fe2O3-MoS2
composite were also
ivestigated.

References

  • 1. Gao X, Wang X, Ouyang X, Wen C. Flexible Superhydrophobic and Superoleophilic MoS2 Sponge for Highly Efficient Oil-Water Separation. Sci. Rep-UK. 2016; 6:27207.
  • 2. Karimi M, Jahangir V, Ezzati M, Saydi J, Lejbini MB. Zn0. 94Cd0. 06O nanoparticles with various structures, morphologies and optical properties toward MB optodecolorization. Opt. Mater. 2014; 36(3):697-703.
  • 3. Putri LK, Tan LL, Ong WJ, Chang WS, Chai SP. Graphene oxide: exploiting its unique properties toward visible-light-driven photocatalysis. Appl.Mater. Today. 2016; 4:9-16.
  • 4. Li M, Huang H, Yu S, Tian N, Dong F, Du X, Zhang Y. Simultaneously promoting charge separation and photoabsorption of BiOX (X= Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 2016; 386:285-95.
  • 5. Mazhdi M, Saydi J, Karimi M, Seidi J, Mazhdi F. A study on optical, photoluminescence and thermoluminescence properties of ZnO and Mn doped-ZnO nanocrystalline particles. Optik 2013; 124(20):4128-33.
  • 6. Askari MB, Banizi ZT, Soltani S, Seifi M. Comparison of optical properties and photocatalytic behavior of TiO2/MWCNT, CdS/MWCNT and TiO2/CdS/MWCNT nanocomposites. Optik. 2018; 157:230-9.
  • 7. Bystrov VS, Piccirillo C, Tobaldi DM, Castro, PML, Coutinho J, Kopyl S, Pullar RC. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: comparing modelling with measured data. Appl. Catal. B: Environ. 2016; 196:100-7.
  • 8. Güler SH, Güler Ö, Evin E, Islak S. Electrical and optical properties of ZnO-milled Fe2O3 nanocomposites produced by powder metallurgy route. Optik. 2016; 127(6):3187-91.
  • 9. Yin Q, Qiao R, Zhu L, Li Z, Li M, Wu W. α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: Synthesis and enhanced visible-light photocatalysis. Mater. Lett. 2014; 135:135-8.
  • 10. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012; 7(11):699.
  • 11. Chhowalla M, Shin HS, Eda G, Li, LJ Loh, KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013; 5(4):263.
  • 12. Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015; 44(9):2702-12.
  • 13. Kalantar‐zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. (2015). Two‐dimensional transition metal dichalcogenides in biosystems. Adv. Funct. Mater. 2015; 25(32):5086-99.
  • 14. Yin W, Dong X, Yu J, Pan J, Yao Z, Gu Z, Zhao Y. MoS2-Nanosheet-Assisted Coordination of Metal Ions with Porphyrin for Rapid Detection and Removal of Cadmium Ions in Aqueous Media. ACS Appl. Mater. Inter. 2017; 9(25):21362-70.
  • 15. Chen Y, Wu Y, Sun B, Liu S, Liu H. (2017). Two‐Dimensional Nanomaterials for Cancer Nanotheranostics. Small. 2017; 13(10):1603446.
  • 16. Song JX, Tang XY, Zhou DM, Zhang W, James TD, He XP, Tian H. A fluorogenic 2D glycosheet for the simultaneous identification of human-and avian-receptor specificity in influenza viruses. Mater. Horiz. 2017; 4(3):431-6.
  • 17. Wahiba M, Feng XQ, Zang Y, James TD, Li J, Chen GR, He XP. A supramolecular pyrenyl glycoside-coated 2D MoS 2 composite electrode for selective cell capture. Chem. Commun. 2016; 52(78):11689-92.
  • 18. Teo WZ, Chng ELK, Sofer Z, Pumera M. Cytotoxicity of Exfoliated Transition‐Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues. Chemistry. 2014; 20(31):9627-32.
  • 19. Zhu H, Qiu S, Jiang W, Wu D, Zhang C. Evaluation of electrospun polyvinyl chloride/polystyrene fibers as sorbent materials for oil spill cleanup. Environ. Sci. Technol. 2011; 45(10):4527-31.
  • 20. Yuan J, Liu X, Akbulut O, Hu J, Suib SL, Kong J, Stellacci F. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol. 2008; 3(6):332.
  • 21. Zhang H, Duan X, Ding Y. Preparation and investigation on a novel nanostructured magnetic base catalyst MgAl–OH-LDH/CoFe2O4, Mater. Chem. Phys. 2009;114(2-3): 795-801.
  • 22. Willis AL. Turro NJ, O’Brien S. Spectroscopic Characterization of the Surface of Iron Oxide Nanocrystals, Chem. Mater. 2005;17:5970-5.
  • 23. Wang H, Chen P, Wen F, Zhu Y, Zhang Y, Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite, Sens. Actuators B. 2015;220:749–54.
  • 24. Sivashankar R, Sathya AB, Vasantharaj K, Sivasubramanian V. Magnetic composite an environmental super adsorbent for dye sequestration – A review. Environ. Nanotechnol.Monit. Manage. 2014, 1–2, 36–49.
  • 25. Gómez-Pastora J, Bringas E, Ortiz I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 2014, 256, 187–204.
There are 25 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Articles
Authors

Fatih Mehmet Emen

Ruken Esra Demirdöğen

Göktürk Avşar

Ali İhsan Karaçolak

Publication Date May 15, 2019
Submission Date October 2, 2018
Acceptance Date January 18, 2019
Published in Issue Year 2019 Volume: 6 Issue: 1

Cite

Vancouver Emen FM, Demirdöğen RE, Avşar G, Karaçolak Aİ. LDH- ɣ-Fe2O3-MoS2 composite for Vegetable Oil and Pb2+ Removal From Water. JOTCSA. 2019;6(1):35-40.